Mutations in hERG (human ether-à-go-go-related gene) potassium channel are closely associated with long QT syndromes. By direct Sanger sequencing, we identified a novel KCNH2 mutation W410R in the patient with long QT syndrome 2 (LQT2). However, the electrophysiological functions of this mutation remain unknown. In comparison to hERG channels, hERG channels have markedly decreased total and surface expressions. W410R mutation dramatically reduces hERG channel currents (I) and shifts its steady-state activation curve to depolarization. Moreover, hERG channels make dominant-negative effects on hERG channels. Significantly, we find hERG channel blocker E-4031 could partially rescue the function of hERG channels by increasing the membrane expression. By using in silico model, we reveal that hERG channels obviously elongate the repolarization of human ventricular myocyte action potentials. Collectively, W410R mutation decreases the currents of hERG channel, because of diminished membrane expression of mutant channels, that subsequently leads to elongated repolarization of cardiomyocyte, which might induce the pathogenesis of LQT2. Furthermore, E-4031 could partially rescue the decreased activity of hERG channels. Thus, our work identifies a novel loss-of-function mutation in KCNH2 gene, which might provide a rational basis for the management of LQT2.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-021-02518-1DOI Listing

Publication Analysis

Top Keywords

herg channels
28
herg
12
herg channel
12
mutation kcnh2
8
potassium channel
8
long syndrome
8
channels
8
w410r mutation
8
e-4031 partially
8
partially rescue
8

Similar Publications

Background/objectives: extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential.

Methods: The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!