Shared and unique neural circuitry underlying temporally unpredictable threat and reward processing.

Soc Cogn Affect Neurosci

Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH 43205, USA.

Published: March 2021

Temporally unpredictable stimuli influence behavior across species, as previously demonstrated for sequences of simple threats and rewards with fixed or variable onset. Neuroimaging studies have identified a specific frontolimbic circuit that may become engaged during the anticipation of temporally unpredictable threat (U-threat). However, the neural mechanisms underlying processing of temporally unpredictable reward (U-reward) are incompletely understood. It is also unclear whether these processes are mediated by overlapping or distinct neural systems. These knowledge gaps are noteworthy given that disruptions within these neural systems may lead to maladaptive response to uncertainty. Here, using functional magnetic resonance imaging data from a sample of 159 young adults, we showed that anticipation of both U-threat and U-reward elicited activation in the right anterior insula, right ventral anterior nucleus of the thalamus and right inferior frontal gyrus. U-threat also activated the right posterior insula and dorsal anterior cingulate cortex, relative to U-reward. In contrast, U-reward elicited activation in the right fusiform and left middle occipital gyrus, relative to U-threat. Although there is some overlap in the neural circuitry underlying anticipation of U-threat and U-reward, these processes appear to be largely mediated by distinct circuits. Future studies are needed to corroborate and extend these preliminary findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990065PMC
http://dx.doi.org/10.1093/scan/nsab006DOI Listing

Publication Analysis

Top Keywords

temporally unpredictable
16
neural circuitry
8
circuitry underlying
8
unpredictable threat
8
processing temporally
8
neural systems
8
anticipation u-threat
8
u-threat u-reward
8
u-reward elicited
8
elicited activation
8

Similar Publications

: Falls and fall consequences in older adults are global health issues. Previous studies have compared postural sways or stepping strategies between older adults with and without fall histories to identify factors associated with falls. However, more in-depth neuromuscular/kinematic mechanisms have remained unclear.

View Article and Find Full Text PDF

The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.

View Article and Find Full Text PDF

The N1 auditory evoked potential amplitude depends heavily on the inter-stimulus interval (ISI). Typically, shorter ISIs result in reduced N1 amplitudes, suggesting a decreased neural response with high stimulus presentation rates. However, an exception known as N1 facilitation occurs with very brief ISIs (∼150-500 ms), where the N1 amplitude increases.

View Article and Find Full Text PDF

Intratumoral injections often lack visibility, leading to unpredictable outcomes such as incomplete tumor coverage, off-target drug delivery and systemic toxicities. This study investigated an ultrasound (US) and x-ray imageable thermosensitive hydrogel based on poloxamer 407 (POL) percutaneously delivered in a healthy swine model. The primary objective was to assess the 2D and 3D distribution of the hydrogel within tissue across three different needle devices and injection sites: liver, kidney, and intercostal muscle region.

View Article and Find Full Text PDF

Edge computing resource scheduling method based on container elastic scaling.

PeerJ Comput Sci

October 2024

School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China.

Edge computing is a crucial technology to solve the problem of computing resources and bandwidth required for extensive edge data processing, as well as for meeting the real-time demands of applications. Container virtualization technology has become the underlying technical basis for edge computing due to its efficient performance. Because the traditional container scaling strategy has issues such as long response times, low resource utilization, and unpredictable container application loads, this article proposes a method for scheduling edge computing resources based on the elastic scaling of containers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!