In this Letter, the broadband operation in wavelengths from 520 nm to 980 nm is demonstrated on silicon nitride nanophotonic phased arrays. The widest beam steering angle of 65° on a silicon nitride phased array is achieved. The optical radiation efficiency of the main grating lobe in a broad wavelength range is measured and analyzed theoretically. The optical spots radiated from the phased array chip are studied at different wavelengths of lasers. The nanophotonic phased array is excited by a supercontinuum laser source for a wide range of beam steering for the first time to the best of our knowledge. It paves the way to tune the wavelength from visible to near infrared range for silicon nitride nanophotonic phased arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.411820DOI Listing

Publication Analysis

Top Keywords

silicon nitride
16
nanophotonic phased
16
nitride nanophotonic
12
phased arrays
12
beam steering
12
phased array
12
phased
6
broadband silicon
4
nitride
4
nanophotonic
4

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

SPR Biosensor Based on Bilayer MoS for SARS-CoV-2 Sensing.

Biosensors (Basel)

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy.

The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

We demonstrate unprecedented control and enhancement of thermal radiation using subwavelength conical membranes of silicon nitride. Based on fluctuational electrodynamics, we find that the focusing of surface phonon-polaritons along these membranes enhances their far-field thermal conductance by three orders of magnitude over the blackbody limit. Our calculations reveal a non-monotonic dependence of the thermal conductance on membrane geometry, with a characteristic radiation plateau emerging at small front widths due to competing effects of the polariton focusing and radiative area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!