The microscopic mechanism for ionic influence on the hydrogen bond network of water has not been fully understood. Here we employ the terahertz Kerr effect (TKE) technique to map the intermolecular hydrogen bond dynamics in a series of aqueous halide solutions at the sub-picosecond scale. Compared with pure water, the significantly enhanced bipolar TKE response associated with polarization anisotropy in an ionic aqueous solution is successfully captured. We decompose the measured TKE response into different molecular motion modes and demonstrate that the obviously increasing positive polarity response is mainly due to the anion-water hydrogen bond vibration mode with the resonant THz electric field excitation. Our measurement results provide an experimental basis for further insight into the effects of ions on the structure and dynamics of a hydrogen bond in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.409849 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.
View Article and Find Full Text PDFChem Sci
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong Wollongong New South Wales 2522 Australia
Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.
View Article and Find Full Text PDFSmall
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.
View Article and Find Full Text PDFChemistry
January 2025
University of Oxford, Inorganic Chemistry Laboratory, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!