Adsorption-Based Separation of Near-Azeotropic Mixtures-A Challenging Example for High-Throughput Development of Adsorbents.

J Phys Chem B

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States.

Published: January 2021

Adsorption of gas mixtures is central to adsorption-based gas separations, and the number of adsorbate mixture/adsorbent systems that exist is staggering. Because examples of machine learning (ML) models predicting single-component adsorption of arbitrary molecules in large libraries of crystalline adsorbents have been developed, it is interesting to determine whether these models can accurately predict mixture adsorption. Here, we use molecular simulations to generate mixture adsorption data with a set of 12 near-azeotropic molecules in a diverse set of MOFs. These data provide a challenging example for any method to rapidly predict mixture adsorption in MOFs. We combine a previous ML single-component isotherm model with ideal adsorbed solution theory (IAST) to make predictions that can be compared directly with molecular simulation data for these adsorbed mixtures. This combination of ML and IAST illustrates the scope that is available with these methods, but the accuracy of the resulting predictions is disappointing. By examining the same examples with IAST based on minimal molecular simulation data for single-component isotherms, we show that having an accurate description of adsorption in the dilute loading limit is critical to being able to accurately predict mixture adsorption. This observation points to a useful direction for future work developing robust ML models of adsorption isotherms for diverse collections of molecules and adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c10764DOI Listing

Publication Analysis

Top Keywords

mixture adsorption
16
predict mixture
12
challenging example
8
adsorption
8
accurately predict
8
molecular simulation
8
simulation data
8
adsorption-based separation
4
separation near-azeotropic
4
near-azeotropic mixtures-a
4

Similar Publications

Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.

View Article and Find Full Text PDF

Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes.

Polymers (Basel)

January 2025

Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.

View Article and Find Full Text PDF

Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose-Anionic Surfactant Complexes on Negatively Charged Substrates.

Polymers (Basel)

January 2025

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.

This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.

View Article and Find Full Text PDF

Achieving the adsorptive separation and chromatographic separation of industrially the important chemicals toluene and methylcyclohexane using the same material is a highly desirable goal. We have successfully accomplished this using a fluorinated macrocycle tetrafluoroterphen[3]arene (4FTP3), which was synthesized and used for gas chromatographic separation in our previous work. The macrocycle 4FTP3 permitted the adsorptive separation of toluene from a toluene/methylcyclohexane mixture (1:1, v/v) with a purity of 99.

View Article and Find Full Text PDF

Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!