A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. | LitMetric

Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.

J Biomed Mater Res A

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Published: June 2021

Scaffolds are the important part of the tissue-engineering field that are made from different biomaterials using various techniques. In this study, new scaffold based on polycaprolactone (PCL) and poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) containing hydroxyapatite nanopraticles (n-HA) were fabricated using the dual-leaching technique (DLT). Morphology, porosity, degradation rate, Fourier transfer infrared ray (FTIR) spectra, surface, and mechanical properties as well as capacity of cell binding and cell proliferation on the constructed scaffolds were evaluated. FTIR analysis showed that n-HA particles have some interest interactions with polymeric chains. The best 3D-structure was seen in PCL70PHBV30 scaffold using the scanning electron microscopy (SEM) and its structure improved in the presence of 3, 5 wt% of n-HA. Results of energy dispersive x-ray analysis (EDXA, map of Ca) showed that the nanoparticles have the uniform distribution within the fabricated scaffolds. Porosity analysis showed that the particulate salt leaching technique is a successful approach to building a 3D structure. Increasing of PHBV content and n-HA up to 3 and 5 wt% in the PCL matrix led to increase porosity in all samples. Mechanical properties analysis showed that values of compression modulus and strength are decreased with addition of PHBV and HA nanoparticles. These results were directly in line with the results of morphology and porosity. Cell culture experiments demonstrated that the PCL/PHBV/nHA nanocomposite scaffold has a better tendency of proliferation to cells than that of the pure PCL/PHBV scaffold. All of these results suggest promising potentials of the developed PCL/PHBV/nHA scaffolds in this study desire for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37087DOI Listing

Publication Analysis

Top Keywords

bone tissue
8
dual-leaching technique
8
morphology porosity
8
mechanical properties
8
scaffolds
5
design fabrication
4
fabrication bone
4
tissue scaffolds
4
scaffolds based
4
based pcl/phbv
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!