Proof-of-concept is provided that a large estate of 16-membered macrolide antibiotics can be reached by a "unified" approach. The key building block was formed on scale by an asymmetric vinylogous Mukaiyama aldol reaction; its alkene terminus was then converted either into the corresponding methyl ketone by Wacker oxidation or into a chain-extended aldehyde by catalyst-controlled branch-selective asymmetric hydroformylation. These transformations ultimately opened access to two structurally distinct series of macrolide targets. Notable late-stage maneuvers comprise a rare example of a ruthenium-catalyzed redox isomerization of an 1,3-enyne-5-ol into a 1,3-diene-5-one derivative, as well as the elaboration of a tertiary propargylic alcohol into an acyloin by trans-hydrostannation/Chan-Lam-type coupling. Moreover, this case study illustrates the underutilized possibility of forging complex macrolactone rings by transesterification under essentially neutral conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048839 | PMC |
http://dx.doi.org/10.1002/anie.202016475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!