Wild Microcystis have highly diverse colonial structures and sizes, including variable colony geometry, cell arrangement, and diameter. These structural and dimensional variations may play an important role in continual, frequent Microcystis blooms during summer and autumn, the cause of which still remains unclear. Here, laboratory cultures and field investigations were applied to assess mechanisms that drive variation in structure and size, as well as factors that influence diversity. The results demonstrated that colonies grew to large sizes at the expense of their structure being loose and inhomogeneous. Furthermore, colonies may spontaneously change structure to relieve the constraints of size in return. Influencing factors (nutrient limits and turbulent shear) tended to promote these variations. Our work highlights that the diversity of Microcystis colonies may be a result of structural variations as survival strategies for gaining a higher upper size limit. Therefore, during seasonal successions, large colonies commonly have porous or loosely arranged structures, such as in M. aeruginosa. Additionally, this study hypothesized three possible transition routes for better understanding structural diversity and variations in Microcystis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.13054DOI Listing

Publication Analysis

Top Keywords

structural variations
8
laboratory cultures
8
cultures field
8
field investigations
8
microcystis
5
structural
4
variations increase
4
increase upper
4
upper limit
4
limit colony
4

Similar Publications

This case report presents an atypical transverse cervical artery with its detailed anatomy, morphogenesis, and association with the high arch-shaped subclavian artery. The atypical arteries, related arteries, and adjacent cervical and brachial plexuses were macroscopically examined in a 98-year-old Japanese female cadaver donated to The Nippon Dental University for medical education and research. The atypical deep branch of the transverse cervical artery originated from the internal thoracic artery and passed through between the C5 and C6 roots, in close contact with the C5 and C6 junction, to reach the dorsal side of the brachial plexus.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Enhancing oil recovery in sandstone reservoirs, particularly through smart water flooding, is an appealing area of research that has been thoroughly documented. However, few studies have examined the formation of water-in-heavy oil emulsion because of the incompatibility between the injected water-folded ions, clay particles, and heavy fraction in the oil phase. In this study, we investigated the synergistic roles of asphaltene and clay in the smart water flooding process using a novel experimental approach.

View Article and Find Full Text PDF

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Multi scale multi attention network for blood vessel segmentation in fundus images.

Sci Rep

January 2025

Department of Data Science and Artificial Intelligence, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.

Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!