Osteoarthritis is the most prevalent joint degenerative disease and has been considered a major cause of severe joint pain and physical disability in the elderly. The chondrocyte is the only cell type found in articular cartilage and chondrocyte senescence plays a pivotal role in the pathogenesis of osteoarthritis. Apremilast is an oral PDE4 inhibitor and has been used for the treatment of patients with active psoriatic arthritis. In the present study, the biological function of apremilast was examined in an interleukin (IL)‑17‑treated chondrocyte model. Expression levels of target genes and proteins were measured using reverse transcription‑quantitative PCR, ELISA, and western blotting, respectively. ROS levels in chondrocytes were examined using the fluorescent dye DCFH‑DA. Cellular senescence was determined using senescence-associated-β-galactosidase staining. The profile of cell cycle phases was analyzed via flow cytometry. It was revealed that treatment with apremilast reduced the expression of IL‑1β, MCP‑1, and the production of ROS. SA‑β‑gal staining results indicated that the presence of apremilast suppressed IL‑17‑induced cellular senescence. Furthermore, apremilast prevented IL‑17‑induced G0/G1 phase cell cycle arrest. In addition, it was demonstrated that apremilast suppressed IL‑17‑induced expression of p21 and PAI‑1. Notably, the silencing of sirtuin 1 (SIRT1) abolished the protective effect of apremilast against IL‑17‑induced cellular senescence, suggesting that the action of apremilast in chondrocytes is dependent on SIRT1. In conclusion, the present results revealed that apremilast exerted a beneficial effect, thereby protecting chondrocytes from senescence induced by IL‑17.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834959PMC
http://dx.doi.org/10.3892/ijmm.2021.4845DOI Listing

Publication Analysis

Top Keywords

cellular senescence
16
il‑17‑induced cellular
12
apremilast
10
cell cycle
8
apremilast suppressed
8
suppressed il‑17‑induced
8
senescence
6
il‑17‑induced
5
apremilast prevents
4
prevents il‑17‑induced
4

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.

Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.

View Article and Find Full Text PDF

Thyroid hormone receptor- and stage-dependent transcriptome changes affect the initial period of Xenopus tropicalis tail regeneration.

BMC Genomics

December 2024

Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.

Background: Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!