When flowing whole blood contacts medical device surfaces, the most common blood-material interactions result in coagulation, inflammation, and infection. Many new blood-contacting biomaterials have been proposed based on strategies that address just one of these common modes of failure. This study proposes to mitigate unfavorable biological reactions that occur with blood-contacting medical devices by designing multifunctional surfaces, with features optimized to meet multiple performance criteria. These multifunctional surfaces incorporate the release of the small molecule hormone nitric oxide (NO) with surface chemistry and nanotopography that mimic features of the vascular endothelial glycocalyx. These multifunctional surfaces have features that interact with coagulation components, inflammatory cells, and bacterial cells. While a single surface feature alone may not be sufficient to achieve multiple functions, the release of NO from the surfaces along with their modification to mimic the endothelial glycocalyx synergistically improves platelet-, leukocyte-, and bacteria-surface interactions. This work demonstrates that new blood-compatible materials should be designed with multiple features, to better address the multiple modes of failure of blood-contacting medical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202001748 | DOI Listing |
Small
December 2024
Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
The study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.
View Article and Find Full Text PDFJACS Au
December 2024
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:
Large bone defects are a major clinical challenge in bone reconstructive surgery. 3D printing is a powerful technology that enables the manufacture of custom tissue-engineered scaffolds for bone regeneration. Electrical stimulation (ES) is a treatment method for external bone defects that compensates for damaged internal electrical signals and stimulates cell proliferation and differentiation.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China. Electronic address:
Manganese dioxide nanosheets (MnO NSs) have garnered significant attention in analytical sensing, while the majority of the previous reports suffer from a complex preparation process involving reducing agents, template or high-temperature. In this work, a novel MnO NSs decorated TiCT MXene nanoribbons (TiCTNR@MnO) composite was firstly assemblied via a facile one-step strategy and applied as a bi-signal generator to enable colorimetric and fluorescence (FL) dual-response sensing. During the assembly process, TiCTNR innovatively acted as both reductant and carrier to prevent the aggregation of MnO NSs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!