Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To improve understanding and management of the consequences of current rapid environmental change, ecologists advocate using long-term monitoring data series to generate iterative near-term predictions of ecosystem responses. This approach allows scientific evidence to increase rapidly and management strategies to be tailored simultaneously. Iterative near-term forecasting may therefore be particularly useful for adaptive monitoring of ecosystems subjected to rapid climate change. Here, we show how to implement near-term forecasting in the case of a harvested population of rock ptarmigan in high-arctic Svalbard, a region subjected to the largest and most rapid climate change on Earth. We fitted state-space models to ptarmigan counts from point transect distance sampling during 2005-2019 and developed two types of predictions: (1) explanatory predictions to quantify the effect of potential drivers of ptarmigan population dynamics, and (2) anticipatory predictions to assess the ability of candidate models of increasing complexity to forecast next-year population density. Based on the explanatory predictions, we found that a recent increasing trend in the Svalbard rock ptarmigan population can be attributed to major changes in winter climate. Currently, a strong positive effect of increasing average winter temperature on ptarmigan population growth outweighs the negative impacts of other manifestations of climate change such as rain-on-snow events. Moreover, the ptarmigan population may compensate for current harvest levels. Based on the anticipatory predictions, the near-term forecasting ability of the models improved nonlinearly with the length of the time series, but yielded good forecasts even based on a short time series. The inclusion of ecological predictors improved forecasts of sharp changes in next-year population density, demonstrating the value of ecosystem-based monitoring. Overall, our study illustrates the power of integrating near-term forecasting in monitoring systems to aid understanding and management of wildlife populations exposed to rapid climate change. We provide recommendations for how to improve this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.15518 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!