Recently the applications of engineered nanoparticles in the agricultural sector is increased as nano-pesticides, nano-fertilizers, nanocarrier for macro- or micronutrients, nano-sensors, etc. In this study, biocompatible iron oxide nanoparticles (FeO NPs) have been synthesized through an environment-friendly route using Cassia occidentalis L. flower extract to act as nano-priming agent for promoting germination of Pusa basmati rice seeds. Different characterization methods, viz. X-ray diffraction, particle size analyser, zeta potential and scanning electron microscopy, were used to show efficacious synthesis of FeO NPs capped with phytochemicals. Rice seeds primed with FeO NPs at 20 and 40 mg/L efficiently enhanced germination and seedling vigour compared to ferrous sulphate (FeSO) priming and hydro-primed control. The seeds primed with 20 mg/L FeO NPs showed up to 50% stimulation in biophysical parameters such as root length and dry weight. Substantial stimulation of sugar and amylase content was also reported at the same concentration. The antioxidant enzyme activity was significantly increased as compared to FeSO priming and control. Inductively coupled plasma mass spectroscopy (ICP-MS) study was also done for analysis of Fe, Zn, K, Ca, and Mn concentration in seeds. The seed priming technique signifies a comprehensible and innovative approach that could enhance α-amylase activity, iron acquisition, and ROS production, ensuing elevated soluble sugar levels for supporting seedling growth and enhancing seed germination rate, respectively. In this report, phytochemical-capped FeO NPs are presented as a capable nano-priming agent for stimulating the germination of naturally aged rice seeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-12056-5 | DOI Listing |
Sci Total Environ
December 2024
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Physics, College of Science, University of Halabja, Halabja, Kurdistan Region, Iraq.
Background: Antimicrobial resistance (AMR) presents a serious threat to health, highlighting the urgent need for more effective antimicrobial agents with innovative mechanisms of action. Nanotechnology offers promising solutions by enabling the creation of nanoparticles (NPs) with antibacterial properties. This study aimed to explore the antibacterial, anti-biofilm, and anti-virulence effects of eco-friendly synthesized α-Fe₂O₃ nanoparticles (α-Fe₂O₃-NPs) against pathogenic bacteria.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
Genet Mol Biol
September 2024
Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil.
Iron oxide nanoparticles (FeO-NPs) are widely used in scientific and technological fields. Environmental concerns have been raised about residual FeO-NPs levels as their toxicity and bioaccumulative potential are not well understood. Oreochromis niloticus were exposed to nanoparticles of γ-Fe2O3 and Fe3O4.
View Article and Find Full Text PDFBMC Plant Biol
October 2024
Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!