At present, water pollution is still a serious problem in some parts of China. Clean water corridor technology (which provides water quality assurance and pollution load reduction from the Major Science and Technology Program for Water Pollution Control and Treatment) is a river pollution control and treatment measure. However, due to the differences of specific river conditions, it is not initially clear which technology can be used to obtain the best effect. Numerical simulation can address this issue. The results can be used as the basis for selecting clean water corridor technology. Combined with remote sensing (RS) and geographic information system (GIS) technology, the relationship between land use and non-point source pollution load was analyzed by using the HSPF (Hydrological Simulation Program-Fortran) model. According to the distribution of pollution load, the effect of the clear water corridor technology and its combination scenario on the reduction of non-point source pollution in the basin was simulated, and the best clear water corridor technology scheme for the control of non-point source pollution was identified. Research results show that from 2015 to 2018, the non-point source pollution load of total nitrogen in the Paihe River basin showed an overall increasing trend, while the total phosphorus showed a slightly increasing trend. Agricultural land and construction land accounted for 70% and 20%, respectively, of the non-point source pollution load, and the change in land use played an important role in the load of non-point source pollution. In terms of spatial distribution, the non-point source pollution of total nitrogen and total phosphorus was mainly concentrated in the downstream region and the central region. The non-point source pollution load reduction rates of total nitrogen and total phosphorus by the three types of clean water corridor technologies of vegetation buffer zones, permeable sidewalks and constructed wetlands, and their combinations were 15.29% and 15.03%, 11.93% and 11.48%, 8.96% and 8.67%, and 24.12% and 23.20%, respectively. It is necessary to comprehensively adopt clean water corridor technology for an optimal allocation and reasonable layout and to increase the pollution load reduction rate to further achieve ecological environment restoration goals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-12274-x | DOI Listing |
Environ Monit Assess
January 2025
Taywade College, Koradi, Nagpur, Maharashtra, 441111, India.
Coastal waters are the ultimate destination for both point and non-point sources of contamination. The uncontrolled dicharge of fecal waste into the ocean harms natural resources, marine life, and poses health risks to humans. Regular monitoring of coastal water quality and source tracking is important to prevent disease outbreaks.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The study of terrestrial phosphorus inflow (hereafter referred to as phosphorus inflow) fluxes is essential for controlling non-point source (NPS) pollution. The SWAT model was successfully used to simulate phosphorus inflow fluxes in the Dongting Lake area, while a hybrid model (LSTM and SWAT) was developed and validated for predicting the reduction in phosphorus inflow fluxes among rivers based on three typical reduction scenarios: agricultural control, livestock and poultry reduction, and soil and water conservation measures. The results showed that the inflow flux of TP was 3.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom.
This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China. Electronic address:
Bioretention systems offer advantages in controlling non-point source pollution from runoff rainwater. However, the systems frequently encounter challenges, including insufficient stability of nitrogen and phosphorus removal. Limited research has been performed on bioretention systems which integrate actual data from non-point source pollution cases for the quantitative and qualitative refinement of initial and non-initial rainwater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!