Radiofrequency denervation has been established for many years as an important minimally invasive procedure for the treatment of chronic pain conditions. Positive experiences of many users for various indications are contrasted by a nonuniform evidence. With meticulous patient selection and correct assessment of the indications a longer term reduction of pain, a reduced need for analgesics and an improvement in the quality of life can be achieved. The aim of this interdisciplinary position paper is to present the value of radiofrequency denervation in the treatment of chronic pain. The summarized recommendations of the expert group are based on the available evidence and on the clinical experiences of Austrian centers that frequently implement the procedure. The position paper contains recommendations on patient selection and proven indications. We discribe safety aspects, complications, side effects and contraindications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00482-020-00526-1DOI Listing

Publication Analysis

Top Keywords

position paper
12
radiofrequency denervation
12
treatment chronic
12
paper radiofrequency
8
denervation treatment
8
chronic pain
8
patient selection
8
[interdisciplinary position
4
chronic pain]
4
pain] radiofrequency
4

Similar Publications

In this paper, we describe the dataset captured with our proprietary data capture solution mounted on top of a Land Rover Defender vehicle. The captured data are the real data of drives on various Slovak roads. The total dataset consist of almost 33 hours of driving with a automotive grade FPD Link camera with 30 fps and with additional sensors such as high-precision GNSS sensor and modem towards mobile data connectivity LTE and 5 G.

View Article and Find Full Text PDF

Carbon emissions from land-use change have accounted for approximately one-third of global carbon emissions since the 21st century. As an effective planning tool for climate change mitigation at the city scale, low-carbon zoning governance has become a hot topic in the global academic community. However, despite increasingly relevant research, this field suffers from weak foundations, single research perspectives, and limited methods.

View Article and Find Full Text PDF

Photoelectrochemical aptasensing and fluorescence imaging co-joint detecting MCF-7 cells in whole blood via an inertial separation microfluidic chip.

Talanta

December 2024

Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China. Electronic address:

The mortality rate of tumor is still very high till now. Circulating tumor cells (CTCs) are the major culprit of high cancer mortality. To improve survival rate of cancer patients, real-time monitoring and quantitative detection of CTCs are of indescribable value.

View Article and Find Full Text PDF

The natural history of chronic hepatitis C virus (HCV) infection has changed after the introduction of direct-acting antiviral agents (DAAs). Screening programs have been ongoing to reach the World Health Organisation's goal of HCV elimination by 2030, and most infected people are eligible for treatment. Given the increased cardiovascular risk in people with HCV infection and the metabolic pathways of DAAs, it is not uncommon to face the issue of drug-drug interactions (DDIs) with antiplatelet or anticoagulant drugs.

View Article and Find Full Text PDF

Differentiation of glioblastoma G4 and two types of meningiomas using FTIR spectra and machine learning.

Anal Biochem

December 2024

Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland. Electronic address:

Brain tumors are among the most dangerous, due to their location in the organ that governs all life processes. Moreover, the high differentiation of these poses a challenge in diagnostics. Therefore, this study focused on the chemical differentiation of glioblastoma G4 (GBM) and two types of meningiomas (atypical - MAtyp and angiomatous - MAng) were done using Fourier Transform InfraRed (FTIR) spectroscopy, combined with statistical, multivariate, machine learning and rate of spectrum changes methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!