Identifying attributes that distinguish pre-malignant from senescent cells provides opportunities for targeted disease eradication and revival of anti-tumour immunity. We modelled a telomere-driven crisis in four human fibroblast lines, sampling at multiple time points to delineate genomic rearrangements and transcriptome developments that characterize the transition from dynamic proliferation into replicative crisis. Progression through crisis was associated with abundant intra-chromosomal telomere fusions with increasing asymmetry and reduced microhomology usage, suggesting shifts in DNA repair capacity. Eroded telomeres also fused with genomic loci actively engaged in transcription, with particular enrichment in long genes. Both gross copy number alterations and transcriptional responses to crisis likely underpin the elevated frequencies of telomere fusion with chromosomes 9, 16, 17, 19 and most exceptionally, chromosome 12. Juxtaposition of crisis-regulated genes with loci undergoing recombination exposes the collusive contributions of cellular stress responses to the evolving cancer genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787266PMC
http://dx.doi.org/10.1093/narcan/zcaa044DOI Listing

Publication Analysis

Top Keywords

telomere fusions
8
crisis
5
tracking telomere
4
fusions crisis
4
crisis reveals
4
reveals conflict
4
conflict dna
4
dna transcription
4
transcription dna
4
dna damage
4

Similar Publications

Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, relies on retrotransposable elements-specifically , , and (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms.

View Article and Find Full Text PDF

Lamiales is one of the largest orders of angiosperms with a complex evolutionary history and plays a significant role in human life. However, the polyploidization and chromosome evolution histories within this group remain in mystery. Among Lamiales, Isodon serra (Maxim.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a novel in vitro muscle-derived cell line from a stranded male Cuvier's Beaked whale, facilitating research on its myogenic cells.
  • The characterization involved various assays that assessed growth rate, fusion index, and chromosomal analysis, showing the cells' capability to fuse into multinucleated myotubes over time.
  • The findings highlight the potential of this whale cell line for understanding cetacean muscle physiology and assessing the impacts of water pollutants through in vitro models.
View Article and Find Full Text PDF

Adaptive protein coevolution preserves telomere integrity.

bioRxiv

November 2024

Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA.

Many essential conserved functions depend, paradoxically, on proteins that evolve rapidly under positive selection. How such adaptively evolving proteins promote biological innovation while preserving conserved, essential functions remains unclear. Here, we experimentally test the hypothesis that adaptive protein-protein coevolution within an essential multi-protein complex mitigates the deleterious incidental byproducts of innovation under pressure from selfish genetic elements.

View Article and Find Full Text PDF

Telomeres are eukaryotic chromosome end structures that guard against sequence loss and aberrant chromosome fusions. Telomeric repeat motifs (TRMs), the minimal repeating unit of a telomere, vary from species to species, with some evolutionary clades experiencing a rapid sequence divergence. To explore the full scope of this evolutionary divergence, many bioinformatic tools have been developed to infer novel TRMs using repetitive sequence search on short sequencing reads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!