Dual energy CT (DECT)with image acquisition at two different photon X-ray levels allows the characterization of a specific tissue or material/elements, the extrapolation of virtual unenhanced and monoenergetic images, and the quantification of iodine uptake; such special capabilities make the DECT the perfect technique to support oncological imaging for tumor detection and characterization and treatment monitoring, while concurrently reducing the dose of radiation and iodine and improving the metal artifact reduction. Even though its potential in the field of oncology has not been fully explored yet, DECT is already widely used today thanks to the availability of different CT technologies, such as dual-source, single-source rapid-switching, single-source sequential, single-source twin-beam and dual-layer technologies. Moreover DECT technology represents the future of the imaging innovation and it is subject to ongoing development that increase according its clinical potentiality, in particular in the field of oncology. This review points out recent state-of-the-art in DECT applications in gland tumors, with special focus on its potential uses in the field of oncological imaging of endocrine and exocrine glands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804546 | PMC |
http://dx.doi.org/10.21037/gs-20-543 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
KTH Royal Institute of Technology: Kungliga Tekniska Hogskolan, Department of Fibre and Polymer Technology, SWEDEN.
The plastic waste accumulation requires facile yet effective solutions. Currently mechanical recycling typically leads to downcycling, while the environmental footprint of chemical recycling is often unacceptable. Here, we introduce a dual circularity concept, where rational molecular design paves the way for complementary closed-loop mechanical and chemical recyclability under mild conditions.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, 0179, Tbilisi, Georgia. Electronic address:
Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 PR China.
Designing semiconductor photocatalysts with unique structures can improve the transfer efficiency of solar energy to hydrogen (H). In this study, a dual modification method of element doping and morphological control was used. The Mn-doped hollow octahedron ZnInS (ZHO-Mn) was synthesized by a simple one-pot solvothermal method using the octahedral Mn-based metal-organic framework (Mn-MOF) as a template.
View Article and Find Full Text PDFJ Clin Densitom
December 2024
Service de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, France; Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedEx), INSERM, CNRS, Université de Montpellier (UM), France.
Purpose: The aim of this study was to investigate the correlations between areal bone mineral density (aBMD) and body composition measured by two dual-energy X-ray absorptiometers (DXA), the DMS Stratos® (STR) and the Hologic Horizon A® (HRZ), and then generate cross-calibration equations between the two scanners.
Methods: Repeat scans were obtained from 251 adults (85 % female), 36 ± 14 years old with mean body mass index (BMI) of 28.7 ± 11.
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!