Burman S, Sharma PB, Tyagi M, Singh GP, Chaturvedi A. Transport Circuit during COVID-19 Crisis: A Simple Modification of the Bain's Circuit for Safety of Healthcare Workers. Indian J Crit Care Med 2020;24(12):1281-1283.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775932PMC
http://dx.doi.org/10.5005/jp-journals-10071-23686DOI Listing

Publication Analysis

Top Keywords

transport circuit
8
circuit covid-19
8
covid-19 crisis
8
crisis simple
8
simple modification
8
modification bain's
8
bain's circuit
8
circuit safety
8
safety healthcare
8
healthcare workers
8

Similar Publications

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Complementary Circuits with WSe/Organic Semiconductor Heterostructure Field-Effect Transistors.

ACS Appl Mater Interfaces

January 2025

Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

A device architecture based on heterostructure WSe/organic semiconductor field-effect transistors (FETs) is demonstrated in which ambipolar conduction is virtually eliminated, resulting in essentially unipolar FETs realized from an ambipolar semiconductor. For p-channel FETs, an electron-accepting organic semiconductor such as hexadecafluorocopperphthalocyanine (FCuPc) is used to form a heterolayer on top of WSe to effectively trap any undesirable electron currents. For n-channel FETs, a hole-accepting organic semiconductor such as pentacene is used to reduce the hole currents without affecting the electron currents.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Enhanced Efficiency and Light Stability of Conventional Organic Solar Cells with a p-Type Polymeric Thin Layer on PEDOT:PSS.

Macromol Rapid Commun

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.

Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability.

View Article and Find Full Text PDF

Verdazyl radical polymers for advanced organic spintronics.

Nat Commun

January 2025

Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.

Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!