The objective of this study was to identify the carotenoids imparting the orange colour to the rind, and pale yellow color to the core, of selected smear-ripened cheeses. The cheeses investigated were Charloe, Ashbrook, Taleggio, and Limburger, and were sourced from artisanal markets. Samples of the rind and core were extracted using non-polar solvents, followed by saponification to hydrolyze triglycerides to remove fatty acids, and to release carotenoid esters. Extracts were tested using ultra-high pressure liquid chromatograph-diode array detector-high resolution mass spectrometry (UHPLC-DAD-MS and -MS/MS), and identities of α- and β-carotene, lycopene, and β-cryptoxanthin confirmed with authentic standards. β-Carotene was the predominant species in both the rind and core, absorbing ~70% of the signal at 450 nm in all cheese extracts tested, as well as minor quantities of β-cryptoxanthin and α-carotene. Carotenoids unique to the rind included lycopene as well as the rare bacterial carotenoids previously identified in bacterial isolates of cheeses (i.e. decaprenoxanthin, sarcinaxanthin, and echinenone). This is the first detailed characterisation of carotenoids extracted directly from smear-ripened cheeses, and reveals that smear-ripened cheese can contribute both provitamin A carotenoids as well as C50 carotenoids to the human diet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802757PMC
http://dx.doi.org/10.1016/j.lwt.2020.110241DOI Listing

Publication Analysis

Top Keywords

smear-ripened cheeses
12
rind core
8
extracts tested
8
carotenoids
6
cheeses
5
comparison carotenoid
4
carotenoid profiles
4
profiles commonly
4
commonly consumed
4
smear-ripened
4

Similar Publications

Brevibacterium enzymes as biological tools for ochratoxin A detoxification in dairy foods.

Int J Food Microbiol

January 2025

Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain. Electronic address:

The origin of ochratoxin A (OTA) in cheeses is mainly due to mould growth during the ripening process, and to a lesser extent, to the use of OTA-contaminated milk in cheese production. Bacterial smear-ripened cheeses developed a smear microbiota on their rind during ripening that greatly contributes to its typical aroma and texture. Bacteria from the Brevibacterium genus belong to the typical smear microbiota of cheeses.

View Article and Find Full Text PDF

Color is one of the first criteria to assess the quality of cheese. However, very limited data are available on the color heterogeneity of the rind and its relationship with microbial community structure. In this study, the color of a wide range of smear-ripened Munster cheeses from various origins was monitored during storage by photographic imaging and data analysis in the CIELAB color space using luminance, chroma, and hue angle as descriptors.

View Article and Find Full Text PDF

Preserving microbial ecosystems obtained from traditional cheese-making processes is crucial to safeguarding the biodiversity of microbial cheese communities and thus ensuring that the high flavor quality of traditional cheeses is maintained. Few protocols have been proposed for the long-term storage of microbial consortia. This work aimed to develop preservation methods to stabilize the entire microbial community in smear-ripened cheese without multiplication or isolation.

View Article and Find Full Text PDF

The surface of smear-ripened cheeses constitutes a dynamic microbial ecosystem resulting from the successive development of different microbial groups such as lactic acid bacteria, fungi, and ripening bacteria. Recent studies indicate that a viral community, mainly composed of bacteriophages, also represents a common and substantial part of the cheese microbiome. However, the composition of this community, its temporal variations, and associations between bacteriophages and their hosts remain poorly characterized.

View Article and Find Full Text PDF

To evaluate the effect of NaCl content on microbiological, biochemical, physicochemical, and sensorial characteristics, Munster cheeses were prepared from pasteurized milk seeded with 3 yeasts (Kluyveromyces marxianus, Debaryomyces hansenii, and Geotrichum candidum) and 5 ripening bacteria (Arthrobacter arilaitensis, Brevibacterium aurantiacum, Corynebacterium casei, Hafnia alvei, and Staphylococcus equorum). Experiments were performed in triplicate under 1.0%, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!