Opioids are the most potent of all analgesics. Although traditionally used solely for acute self-limited conditions and palliation of severe cancer-associated pain, a movement to promote subjective pain (scale, 0 to 10) to the status of a "fifth vital sign" bolstered widespread prescribing for chronic, noncancer pain. This, coupled with rising misuse, initiated a surge in unintentional deaths, increased drug-associated acute coronary syndrome, and endocarditis. In response, the American College of Cardiology issued a call to action for cardiovascular care teams. Opioid toxicity is primarily mediated via potent μ-receptor agonism resulting in ventilatory depression. However, both overdose and opioid withdrawal can trigger major adverse cardiovascular events resulting from hemodynamic, vascular, and proarrhythmic/electrophysiological consequences. Although natural opioid analogues are devoid of repolarization effects, synthetic agents may be proarrhythmic. This perspective explores cardiovascular consequences of opioids, the contributions of off-target electrophysiologic properties to mortality, and provides practical safety recommendations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jacc.2020.11.002 | DOI Listing |
Curr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, IMU University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
Cardiovascular Disease [CVD], the leading cause of death globally, poses a significant burden on the healthcare sector. Its association with stress and Cushing's Syndrome has driven cortisol, the 'stress hormone,' to be a potential candidate in determining CVD risk. Cortisol synthesis and release through the hypothalamic-pituitary-adrenal [HPA] axis are regulated by several hormones and receptors involved in the pathological cascade towards CVD.
View Article and Find Full Text PDFCurr Vasc Pharmacol
January 2025
Department of Cardiology, Ippokrateio University Hospital, Athens, Greece.
Introduction/objective: Emotional, mental, or psychological distress, defined as increased symptoms of depression, anxiety, and/or stress, is common in patients with chronic diseases, such as cardiovascular (CV) disease (CVD).
Methods: Literature was reviewed regarding data from studies and meta-analyses examining the impact of emotional stress on the occurrence and outcome of several CVDs (coronary disease, heart failure, hypertension, arrhythmias, stroke). These influences' pathophysiology and clinical spectrum are detailed, tabulated, and pictorially illustrated.
Curr Med Chem
January 2025
Department of Cardiology, Taizhou Hospital of Zhejiang Province, affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China.
Aims: This study was to explore the relationship between plasma exosomes and Acute myocardial infarction (AMI).
Background: Acute myocardial infarction (AMI) is one of the most common cardiovascular complications. Recent studies have shown that exosomes play a crucial role in the development and progression of cardiovascular diseases.
STAR Protoc
January 2025
Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
As light sheet fluorescence microscopy (LSFM) becomes widely available, reconstruction of time-lapse imaging will further our understanding of complex biological processes at cellular resolution. Here, we present a comprehensive workflow for in toto capture, processing, and analysis of multi-view LSFM experiments using the ex vivo mouse embryo as a model system of development. Our protocol describes imaging on a commercial LSFM instrument followed by computational analysis in discrete segments, using open-source software.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!