Background: Whole brain radiotherapy (WBRT) can impair patients' cognitive function. Hippocampal avoidance during WBRT can potentially prevent this side effect. However, manually delineating the target area is time-consuming and difficult. Here, we proposed a credible approach of automatic hippocampal delineation based on convolutional neural networks.
Methods: Referring to the hippocampus contouring atlas proposed by RTOG 0933, we manually delineated (MD) the hippocampus on the MRI data sets (3-dimensional T1-weighted with slice thickness of 1 mm, n = 175), which were used to construct a three-dimensional convolutional neural network aiming for the hippocampus automatic delineation (AD). The performance of this AD tool was tested on three cohorts: (a) 3D T1 MRI with 1-mm slice thickness (n = 30); (b) non-3D T1-weighted MRI with 3-mm slice thickness (n = 19); (c) non-3D T1-weighted MRI with 1-mm slice thickness (n = 11). All MRIs confirmed with normal hippocampus has not been violated by any disease. Virtual radiation plans were created for AD and MD hippocampi in cohort c to evaluate the clinical feasibility of the artificial intelligence approach. Statistical analyses were performed using SPSS version 23. P < 0.05 was considered significant.
Results: The Dice similarity coefficient (DSC) and Average Hausdorff Distance (AVD) between the AD and MD hippocampi are 0.86 ± 0.028 and 0.18 ± 0.050 cm in cohort a, 0.76 ± 0.035 and 0.31 ± 0.064 cm in cohort b, 0.80 ± 0.015 and 0.24 ± 0.021 cm in cohort c, respectively. The DSC and AVD in cohort a were better than those in cohorts b and c (P < 0.01). There is no significant difference between the radiotherapy plans generated using the AD and MD hippocampi.
Conclusion: The AD of the hippocampus based on a deep learning algorithm showed satisfying results, which could have a positive impact on improving delineation accuracy and reducing work load.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807715 | PMC |
http://dx.doi.org/10.1186/s13014-020-01724-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!