Autophagic pathways are regulated mechanisms that play important roles in lysosome-mediated cellular degradation. Yet, the contribution of different autophagic pathways in lysosomal targeting, and characterization of the extent and specificity in their degradome remains largely uncharacterized. By undertaking a multiplex quantitative mass spectrometry approach, we have previously analyzed the lysosomal proteome during chaperone-mediated autophagy (CMA)-stimulated conditions in cancer cells. Here, we have extended our multiplex quantitative mass spectrometry and bioinformatics analysis on the proteome from isolated lysosomes to gain a comprehensive view of the temporal enriched lysosomal content upon non-macroautophagy-activated conditions. In parallel, we describe the functional dependency of LAMP2A on, and to what degree the presence of KFERQ-like motifs in proteins influences, their lysosomal targeting. These findings establish a framework for a better understanding of the degradome mediated by autophagic pathways beyond macroautophagy, and present characterization of the impact of LAMP2A in lysosomal targeting in cancer cells.: CMA: chaperone-mediated autophagy; ER: endoplasmic reticulum; EIF4A1: eukaryotic translation initiation factor 4A1; eMI: endosomal microautophagy; FC: fold change; GO: gene ontology; ISR: integrated stress response; LAMP2A: lysosomal associated membrane protein 2A; MA: macroautophagy; MI: microautophagy; MS: mass spectrometry; PCA: principal component analysis; TAX1BP1: Tax1 binding protein 1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632328 | PMC |
http://dx.doi.org/10.1080/15548627.2021.1876343 | DOI Listing |
J Allergy Clin Immunol
January 2025
National Jewish Health, Denver, CO, USA. Electronic address:
Background: Inhibition of IL-4/IL-13 driven inflammation by dupilumab has shown significant clinical benefits in treatment of atopic dermatitis (AD).
Objective: To assess longitudinal protein and metabolite composition in AD skin during dupilumab treatment.
Methods: Skin tape strip (STS) were collected from lesional/non-lesional skin of 20 AD patients during 16-week dupilumab treatment and from 20 healthy volunteers (HV) followed for 16-weeks.
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.
View Article and Find Full Text PDFActa Biomater
January 2025
Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China. Electronic address:
Aptamers and aptamer-drug conjugates (ApDCs) have shown some success as targeted therapies in cancer theranostics. However, their stability in complex media and their capacity to evade lysosomal breakdown still need improvement. To address these challenges, we herein developed a one-step self-assembly strategy to improve the stability of aptamers or ApDCs, while simultaneously enhancing their delivery performance and therapeutic efficiency through a lysosome-independent pathway.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.
View Article and Find Full Text PDFLife (Basel)
January 2025
Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain.
Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!