In search for future good adsorbents for CO capture, a nitrogen-rich triazole-type Metal-Organic Framework (MOF) is proposed based on the rational design and theoretical molecular simulations. The structure of the proposed MOF, named Zinc Triazolate based Framework (ZTF), is obtained by replacing the amine-organic linker of MAF-66 by a triazole, and its structural parameters are deduced. We used grand-canonical Monte Carlo (GCMC) simulations based on generic classical force fields to correctly predict the adsorption isotherms of CO and HO. For water adsorption in MAF-66 and ZTF, simulations revealed that the strong hydrogen bonding interactions of water with the N atoms of triazole rings of the frameworks are the main driving forces for the high adsorption uptake of water. We also show that the proposed ZTF porous material exhibits exceptional high CO uptake capacity at low pressure, better than MAF-66. Moreover, the nature of the interactions between CO and the MAF-66 and ZTF surface cavities was examined at the microscopic level. Computations show that the interactions occur at two different sites, consisting of Lewis acid-Lewis base interactions and hydrogen bonding, together with obvious electrostatic interactions. In addition, we investigated the influence of the presence of HO molecules on the CO adsorption on the ZTF MOF. GCMC simulations reveal that the addition of HO molecules leads to an enhancement of the CO adsorption at very low pressures but a reduction of this CO adsorption at higher pressures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0037594 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.
View Article and Find Full Text PDFInorg Chem
January 2025
Jiangxi Province Key Laboratory of Functional Organic Polymer, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013 Jiangxi, P. R. China.
The platelike nickel-terephthalate-type metal-organic framework nanoarrays (Ni-BDC NAs) on carbon cloth are obtained by employing agaric-like Ni(OH) NAs as sacrificial templates. The microenvironment of Ni-BDC NAs is modulated by various neighboring functional groups (-NH, -NO, and -Br) on the carboxylate ligand, exerting minimal destructive effects on the structure and morphology of Ni-BDC NAs. The electrochemical oxygen evolution reaction (OER) of Ni-BDC-NH NAs, Ni-BDC-NO NAs, and Ni-BDC-Br NAs exhibited a significant enhancement compared to that of Ni-BDC NAs alone, as evidenced by both experimental and theoretical assessments.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Central Tribal University of Andhra Pradesh (CTUAP), Andhra Pradesh, 535003, India.
Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!