Multi-particle collision dynamics with a non-ideal equation of state. I.

J Chem Phys

Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.

Published: January 2021

AI Article Synopsis

Article Abstract

The method of multi-particle collision dynamics (MPCD) and its different implementations are commonly used in the field of soft matter physics to simulate fluid flow at the micron scale. Typically, the coarse-grained fluid particles are described by the equation of state of an ideal gas, and the fluid is rather compressible. This is in contrast to conventional fluids, which are incompressible for velocities much below the speed of sound, and can cause inhomogeneities in density. We propose an algorithm for MPCD with a modified collision rule that results in a non-ideal equation of state and a significantly decreased compressibility. It allows simulations at less computational costs compared to conventional MPCD algorithms. We derive analytic expressions for the equation of state and the corresponding compressibility as well as shear viscosity. They show overall very good agreement with simulations, where we determine the pressure by simulating a quiet bulk fluid and the shear viscosity by simulating a linear shear flow and a Poiseuille flow.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0037934DOI Listing

Publication Analysis

Top Keywords

equation state
16
multi-particle collision
8
collision dynamics
8
non-ideal equation
8
shear viscosity
8
dynamics non-ideal
4
equation
4
state
4
state method
4
method multi-particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!