Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828304 | PMC |
http://dx.doi.org/10.3390/ijms22020703 | DOI Listing |
Sci Rep
December 2024
Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China.
Old thoracolumbar fracture with kyphosis (OTLFK) often results in low back pain, with intervertebral disc degeneration being a significant contributor. We hypothesized that patients with OTLFK exhibit distinct patterns of disc degeneration compared to those with chronic low back pain without kyphotic deformity. This study aimed to investigate the characteristics of disc degeneration in OTLFK patients and explore its association with sagittal spinal parameters and endplate injury.
View Article and Find Full Text PDFNeurol Int
December 2024
Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia.
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties.
View Article and Find Full Text PDFVet Rec
December 2024
Division of Neurology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
Background: The objective of this study was to analyse the potential benefit of the epidural application of steroids on time to ambulation in non-ambulatory dogs affected by intervertebral disc disease (IVDD) treated with decompressive surgery.
Methods: This prospective, randomised, blinded control trial involved 41 dogs with thoracolumbar disc extrusion, which were randomly allocated into two groups. In the control group, saline was locally applied after surgical decompression of the spinal cord (n = 23).
JOR Spine
December 2024
Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin Dublin Ireland.
Background: Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!