Children in low-and middle-income countries, including Rwanda, experience a greater burden of rotavirus disease relative to developed countries. Evolutionary mechanisms leading to multiple reassortant rotavirus strains have been documented over time which influence the diversity and evolutionary dynamics of novel rotaviruses. Comprehensive rotavirus whole-genome analysis was conducted on 158 rotavirus group A (RVA) samples collected pre- and post-vaccine introduction in children less than five years in Rwanda. Of these RVA positive samples, five strains with the genotype constellations G4P[4]-I1-R2-C2-M2-A2-N2-T1-E1-H2 (n = 1), G9P[4]-I1-R2-C2-M2-A1-N1-T1-E1-H1 (n = 1), G12P[8]-I1-R2-C2-M1-A1-N2-T1-E2-H3 (n = 2) and G12P[8]-I1-R1-C1-M1-A2-N2-T2-E1-H1 (n = 1), with double and triple gene reassortant rotavirus strains were identified. Phylogenetic analysis revealed a close relationship between the Rwandan strains and cognate human RVA strains as well as the RotaTeq vaccine strains in the VP1, VP2, NSP2, NSP4 and NSP5 gene segments. Pairwise analyses revealed multiple differences in amino acid residues of the VP7 and VP4 antigenic regions of the RotaTeq vaccine strain and representative Rwandan study strains. Although the impact of such amino acid changes on the effectiveness of rotavirus vaccines has not been fully explored, this analysis underlines the potential of rotavirus whole-genome analysis by enhancing knowledge and understanding of intergenogroup reassortant strains circulating in Rwanda post vaccine introduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828107 | PMC |
http://dx.doi.org/10.3390/v13010095 | DOI Listing |
J Med Virol
December 2024
Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan.
Inter-genogroup reassortment of Rotavirus A (RVA) strains has highlighted the spread of unusual RVA strains worldwide. We previously reported the equine-like G3 RVA as the predominant strain in Indonesia in 2015-2016. However, since July 2017, typical human genotypes G1 and G3 have replaced these strains completely.
View Article and Find Full Text PDFJ Med Virol
December 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Diseases Control and Prevention, Beijing, China.
Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The LLR RVA vaccine, which licensed in 2000 and widely used in China, significantly reduced rotavirus disease burden in China. With the changing of RV circulating strains and the emergence of new genotypes, the LLR vaccine against RVGE needed to be upgraded.
View Article and Find Full Text PDFViruses
November 2024
Department of Pediatrics, Akita University Graduate School of Medicine, Akita-shi 010-8543, Japan.
Rotavirus vaccines carry a small risk of intussusception mainly 1-7 days after vaccination in the United States of America, Europe, Australia, and Latin America where the background rate of intussusception is relatively low. Such risks are undetectable in Africa and India where the background rate is the lowest. Because few studies were carried out in high-background-rate countries such as Japan, we examined how intussusception occurred in infants living in Akita prefecture, Japan, while the vaccines were sold in the private market.
View Article and Find Full Text PDFInfect Genet Evol
November 2024
Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia; Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia. Electronic address:
Front Vet Sci
September 2024
Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
Bovine rotavirus (BRV) is the main cause of acute gastroenteritis in calves, resulting in significant economic losses to the cattle industry worldwide. Additionally, BRV has multiple genotypes, which could enable cross-species transmission, thereby posing a significant risk to public health. However, there is a problem of multiple genotypes coexisting in BRV, and the cross-protection effect between different genotypes of rotavirus strains is not effective enough.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!