AI Article Synopsis

  • Electrospun poly-l-lactic acid (PLLA) fiber scaffolds are used to enhance axonal growth in neural engineering applications.
  • The study focused on improving these fibers by blending PLLA with poly(pentadecalactone) (PLLA-PPDL), resulting in larger diameter fibers with varied surface textures and similar mechanical properties.
  • The modified PLLA+PLLA-PPDL fibers showed increased neurite outgrowth, likely due to their increased diameter and enhanced surface nanotopography.

Article Abstract

Electrospun poly-l-lactic acid (PLLA) fiber scaffolds are used to direct axonal extension in neural engineering models. We aimed to improve the efficacy of these fibers in promoting neurite outgrowth by altering surface topography and reducing fiber elastic modulus through the incorporation of a compatibilized blend, poly-l-lactic acid-poly(pentadecalactone) (PLLA-PPDL) into the solution prior to electrospinning. PLLA+PLLA-PPDL fibers had a larger diameter, increased surface nanotopography, and lower glass transition temperature than PLLA fibers but had similar mechanical properties. Increases in neurite outgrowth on PLLA+PLLA-PPDL fibers were observed, potentially due to the significantly increased diameter and surface coverage with nanotopography. Ultimately, these results suggest that greater electrospun fiber diameter and surface topography may contribute to increases in neurite outgrowth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b00013DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
16
poly-l-lactic acid
8
surface topography
8
plla+plla-ppdl fibers
8
increases neurite
8
diameter surface
8
fibers
6
poly-l-lactic
4
poly-l-lactic acid--polypentadecalactone
4
acid--polypentadecalactone electrospun
4

Similar Publications

Structurally diverse chromane meroterpenoids from Rhododendron capitatum with multifunctional neuroprotective effects.

Eur J Med Chem

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China. Electronic address:

Eleven new chromane meroterpenoids (1-11), along with 24 known ones (12-35) were isolated from Rhododendron capitatum, a Tibetan medicine. Their structures were determined via extensive spectroscopic methods. The absolute configurations of 1 and 2 were determined by comparison of the experimental and theoretically calculated ECD data.

View Article and Find Full Text PDF

Electrical stimulation of injured nerves promotes recovery in animals and humans.

J Physiol

December 2024

Division of Reconstructive and Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.

The frequent poor functional outcomes after delayed surgical repair of injured human peripheral nerves results in progressive downregulation of growth-associated genes in parallel with reduced neuronal regenerative capacity under each of the experimental conditions of chronic axotomy of neurones that remain without target contact, chronic distal nerve stump denervation, and chronic muscle denervation. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) accelerates the outgrowth of regenerating axons across the surgical site of microsurgical repair of a transected nerve. Exercise programmes also promote nerve regeneration with the combination of ES and exercise being the most effective.

View Article and Find Full Text PDF

The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples.

View Article and Find Full Text PDF

The role of lysophosphatidic acid and its receptors in corneal nerve regeneration.

Ocul Surf

December 2024

Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany.

The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: