Semiconductor materials with promising photocatalytic activities are being developed for numerous applications including their use in the development of antibacterial products. However, the light may not be available everywhere, which restrict the use of semiconductor photocatalytic materials in real applications. In this area, we report a novel nanostructure of BiOBrI to show enormously high bactericidal activities even at dark. We used a solution based single step method at room temperature to produce highly porous and crystalline BiOBrI (x = 0-1) nanostructures. Next, the developed materials were thoroughly characterized by different analytical techniques, such as FESEM, XRD, XPS, etc. To evaluate the bactericidal activities Escherichia coli (gram-negative bacteria) and Bacillus subtilis (gram-positive bacteria) were selected. Interestingly we found that the solid solutions exhibited high potential towards both the bacteria and among them, BiOBrI showed extremely high efficiencies even at dark. Due to their semiconductor behavior, the materials have shown higher activities in the presence of any light source. The knowledge about the behavior of these unique materials revels a new area of research and would certainly help to find out the solution for ever-increasing environmental issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2021.111558 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India.
Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.
Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
Clay minerals are actively used to obtain a bioactive composite. Kaolinite, as a representative of clay minerals, possesses unique properties essential for the creation of biocomposite materials. This mineral, characterized by its distinctive layered structure, is chemically inert, highly stable, thermally resistant, eco-friendly, biocompatible, and non-toxic.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China.
has been extensively utilized in traditional medicine systems worldwide. The essential oil (EO) content and composition are influenced by various external and internal factors, such as climate and harvest season, making it vital to determine the optimal harvest period for high-quality EO production. This study is the first to evaluate the chemical profiles, as well as the antioxidant and antibacterial activities, of leaf oil across the four seasons.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany.
The proline-rich antimicrobial designer peptide Api137 inhibits protein expression in bacteria by binding simultaneously to the ribosomal polypeptide exit tunnel and the release factor (RF), depleting the cellular RF pool and leading to ribosomal arrest at stop codons. This study investigates the additional effect of Api137 on the assembly of ribosomes using an Escherichia coli reporter strain expressing one ribosomal protein per 30S and 50S subunit tagged with mCherry and EGFP, respectively. Separation of cellular extracts derived from cells exposed to Api137 in a sucrose gradient reveals elevated levels of partially assembled and not fully matured precursors of the 50S subunit (pre-50S).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!