Improving the speed of volumetric density map generation via cubic spline interpolation.

J Mol Graph Model

Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Published: May 2021

Visualizing data generated from molecular dynamics simulations can be difficult, particularly when there can be thousands to millions of trajectory frames. The creation of a 3D grid of atomic density (i.e. a volumetric map) is one way to easily view the long-time average behavior of a system. One way to generate volumetric maps is by approximating each atom with a Gaussian function centered on that atom and spread over neighboring grid cells. However the calculation of the Gaussian function requires evaluation of the exponential function, which is computationally costly. Here we report on speeding up the calculation of volumetric maps from molecular dynamics trajectory data by replacing the expensive exponential function evaluation with an approximation using interpolating cubic splines. We also discuss the errors involved in this approximation, and recommend settings for volumetric map creation based on this.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940575PMC
http://dx.doi.org/10.1016/j.jmgm.2021.107832DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
volumetric map
8
volumetric maps
8
gaussian function
8
exponential function
8
volumetric
5
improving speed
4
speed volumetric
4
volumetric density
4
density map
4

Similar Publications

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.

View Article and Find Full Text PDF

Analytical Model for Atomic Relaxation in Twisted Moiré Materials.

Phys Rev Lett

December 2024

National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.

By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.

Bioresour Bioprocess

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.

Feruloyl esterases (FEs, EC 3.1.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!