Improving rice salt tolerance by precision breeding in a new era.

Curr Opin Plant Biol

Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, OT Gatersleben, 06466 Seeland, Germany; Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic. Electronic address:

Published: April 2021

Rice is a premier staple food that constitutes the bulk of the daily diet of the majority of people in Asia. Agricultural productivity must be boosted to support this huge demand for rice. However, production is jeopardized by soil salinity. Advances in whole-genome sequencing, marker-assisted breeding strategies, and targeted mutagenesis have substantially improved the toolbox of today's breeders. Given that salinity has a major influence on rice at both the seedling and reproductive stages, understanding and manipulating this trait will have an enormous impact on sustainable production. This article summarizes recent developments in the understanding of the mechanisms of salt tolerance and how state-of-the-art tools such as RNA guided CRISPR endonuclease technology including targeted mutagenesis or base and prime editing can help in gene discovery and functional analysis as well as in transferring favorable alleles into elite breeding material to speed the breeding of salt-tolerant rice cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbi.2020.101996DOI Listing

Publication Analysis

Top Keywords

salt tolerance
8
targeted mutagenesis
8
improving rice
4
rice salt
4
tolerance precision
4
breeding
4
precision breeding
4
breeding era
4
rice
4
era rice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!