Objectives: The recent discoveries of phylogenetically confirmed COVID-19 reinfection cases worldwide, together with studies suggesting that antibody titres decrease over time, raise the question of what course the epidemic trajectories may take if immunity were really to be temporary in a significant fraction of the population. The objective of this study is to obtain an answer for this important question.
Methods: We construct a ground-up delay differential equation model tailored to incorporate different types of immune response. We considered two immune responses: (a) short-lived immunity of all types, and (b) short-lived sterilizing immunity with durable severity-reducing immunity.
Results: Multiple wave solutions to the model are manifest for intermediate values of the reproduction number R; interestingly, for sufficiently low as well as sufficiently high R, we find conventional single-wave solutions despite temporary immunity.
Conclusions: The versatility of our model, and its very modest demands on computational resources, ensure that a set of disease trajectories can be computed virtually on the same day that a new and relevant immune response study is released. Our work can also be used to analyse the disease dynamics after a vaccine is certified for use and information regarding its immune response becomes available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836705 | PMC |
http://dx.doi.org/10.1016/j.ijid.2021.01.018 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research. Mustansiriyah University, Baghdad, Iraq.
Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.
Materials And Methods: This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.
Asian Pac J Cancer Prev
January 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.
Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.
Intern Emerg Med
January 2025
Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.
Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.
View Article and Find Full Text PDFGenes Genomics
January 2025
Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!