Effect of excipient particle size distribution variability on compact tensile strength; and its in-line prediction by force-displacement and force-time profiling.

Eur J Pharm Sci

GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore. Electronic address:

Published: April 2021

Background: Direct compression is potentially sensitive to particle size distribution (PSD) variability in pharmaceutical grade excipients. Yet, the impact is insufficiently studied. Furthermore, the use of force sensor as a process analytical technology (PAT) platform, to monitor the effect of PSD variations on compact tensile strength, is a readily available but underutilized strategy.

Methods: To address these shortfalls, the effect of PSD variability on compaction was investigated. Low (4% w/w drug) and high (15% w/w drug) dose blends comprising chlorpheniramine, microcrystalline cellulose and spray-agglomerated lactose were tableted. The PSD of spray-agglomerated lactose was varied by adding ungranulated fines to simulate commercially-relevant variability. Tensile strength and disintegration time were determined. The use of force sensor, to generate force-displacement and force-time profiles, for in-line tensile strength prediction was evaluated.

Results: Increasing proportion of ungranulated fines (≥ 16%) reduced tensile strength by 10% and 4% in low and high dose formulations (p < 0.02). Increased friction during compaction hindered particle movement and reduced the energy available for bonding. Nevertheless, disintegration performances were equally acceptable for immediate drug release (≈ 30 s). Modelling of tensile strength with force-displacement and force-time profiles yielded ≥ 98% accuracy for in-line prediction (relative root mean square error of prediction = 3.7% and 4.8%).

Conclusion: A better understanding of the relationship between PSD variability and direct compression was attained; and force-displacement and force-time profiling are pragmatic and elegant PAT strategies. Significantly, with further refinements, the force sensor in the rotary tablet press can be repurposed for process monitoring and quality inspection. This unlocks opportunities for process understanding and control, without additional investments in PAT platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2021.105703DOI Listing

Publication Analysis

Top Keywords

tensile strength
24
force-displacement force-time
16
psd variability
12
force sensor
12
particle size
8
size distribution
8
compact tensile
8
in-line prediction
8
force-time profiling
8
direct compression
8

Similar Publications

High-Density Polyethylene Janus Fibrous Membrane with Enhanced Breathability and Moisture Permeability via PDA Assisted Hydrophilic Modification.

Macromol Rapid Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.

View Article and Find Full Text PDF

Research efforts are increasingly directed towards the development of biodegradable polymers derived from renewable agricultural resources. Polymer blends, which combine multiple polymers, offer enhanced properties such as ductility and toughness while being more cost-effective compared to the development of specialized copolymers. This study examines nine binary and four ternary blends of polylactic acid (PLA), poly(butylene succinate--adipate) (PBSA), and polyhydroxyalkanoate (PHA).

View Article and Find Full Text PDF

Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.

View Article and Find Full Text PDF

The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.

View Article and Find Full Text PDF

It is significant to study the stability of surrounding rock in soft rock tunnels to ensure construction safety and improve efficiency. Through triaxial shear tests on soft rock at various confining pressures, we observed the failure characteristics transitioning from strain softening to strain hardening as confining pressure increases. An improved Hoek-Brown strength criterion has been proposed to characterize the critical confining pressure effect of soft rock, with tensile strength in the tensile zone aligning with experimental results, showing an error of less than 5%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!