Forkhead Box Protein3 Transcription Factor (FOXP3) gene is an essential role player in the function and differentiation of regulatory T cells. Polymorphisms/mutations in FOXP3 gene cause Treg cell dysfunction, promote autoimmunity and inflammation. Based on this presumption, we screened 600 subjects from south India (equal number of diabetic (T2DM), diabetic nephropathy (T2DN) and healthy controls) for promoter and intronic (rs3761548C/A and rs2294021C/T) polymorphisms of FOXP3 gene. PCR-RFLP method used for genotyping, revealed an association of promoter SNP for both T2DM (OR = 2.41, 95% C.I = 1.67-3.49; p < 0.0001) and T2DN (OR = 2.16, 95% C.I = 1.45-3.24; p < 0.005). While intronic polymorphism with T2DN (OR = 1.91, 95% C.I = 1.28-2.84; p < 0.05). Further, in females rs3761548C/A showed 2.6 and 5.5-fold; rs2294021C/T showed 2.2- and 2.5-fold predisposition towards T2DM and T2DN respectively. Males exhibited a twofold risk (OR = 2.01, 95% C.I = 1.22-3.30; p < 0.05) towards T2DM with promoter and no association with intronic polymorphism. The combined genotypes in females with AA-CC; AA-TT predisposed and CA-CC; CA-CT protected heading towards T2DM and T2DN respectively, suggesting irrespective of type of allele at intronic locus AA and CA at promoter locus promote or protect the individual for diabetes and diabetic nephropathy, further confirmed by MLR. To our knowledge, the current study is the first of its kind that revealed an association of these polymorphisms of FOXP3 gene and gender influence on T2DM and T2DN among South Indians. Functional and cell-based studies on Treg cells are warranted to confirm our results that help to develop FOXP3/Treg based therapeutic interventions. Lack of data on Treg cells is the limitation of this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2021.145426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!