Suprachiasmatic nucleus (SCN) of the hypothalamus is the master clock that drives circadian rhythms in physiology and behavior and adjusts their timing to external cues. Neurotransmitter glutamate and glutamatergic receptors sensitive to N-methyl-d-aspartate (NMDA) play a dual role in the SCN by coupling astrocytic and neuronal single cell oscillators and by resetting their phase in response to light. Recent reports suggested that signaling by endogenous cannabinoids (ECs) participates in both of these functions. We have previously shown that ECs, such as 2-arachidonoylglycerol (2-AG), act via CB1 receptors to affect the SCN response to light-mimicking NMDA stimulus in a time-dependent manner. We hypothesized that this ability is linked to the circadian regulation of EC signaling. We demonstrate that circadian clock in the rat SCN regulates expression of 2-AG transport, synthesis and degradation enzymes as well as its receptors. Inhibition of the major 2-AG synthesis enzyme, diacylglycerol lipase, enhanced the phase delay and lowered the amplitude of explanted SCN rhythm in response to NMDAR activation. Using microscopic PER2 bioluminescence imaging, we visualized how individual single cell oscillators in different parts of the SCN respond to the DAGL inhibition/NMDAR activation and shape response of the whole pacemaker. Additionally, we present strong evidence that the zero amplitude behavior of the SCN in response to single NMDA stimulus in the middle of subjective night is the result of a loss of rhythm in individual SCN cells. The paper provides new insights into the modulatory role of endocannabinoid signaling during the light entrainment of the SCN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2021.108455 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!