A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The phosphorylation state of both hERG and KvLQT1 mediates protein-protein interactions between these complementary cardiac potassium channel alpha subunits. | LitMetric

The phosphorylation state of both hERG and KvLQT1 mediates protein-protein interactions between these complementary cardiac potassium channel alpha subunits.

Biochim Biophys Acta Biomembr

Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America. Electronic address:

Published: April 2021

KvLQT1 and hERG are the α-subunits of the voltage-gated K channels which carry the cardiac repolarizing currents IKs and IKr, respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs) in cardiomyocytes. As such, protein-protein interactions between hERG and KvLQT1 may be important in normal cardiac electrophysiology, as well as in arrhythmia and sudden cardiac death. Previous phenomenological observations of functional, mutual downregulation between these complementary repolarizing currents in transgenic rabbit models and human cell culture motivate our investigations into protein-protein interactions between hERG and KvLQT1. Previous data suggest that a dynamic, physical interaction between hERG and KvLQT1 modulates the respective currents. However, the mechanism by which hERG-KvLQT1 interactions are regulated is still poorly understood. Phosphorylation is proposed to play a role since modifying the phosphorylation state of each protein has been shown to alter channel kinetics, and both hERG and KvLQT1 are targets of the Ser/Thr protein kinase PKA, activated by elevated intracellular cAMP. In this work, quantitative apFRET analyses of phosphonull and phosphomimetic hERG and KvLQT1 mutants indicate that unphosphorylated hERG does not interact with KvLQT1, suggesting that hERG phosphorylation is important for wild-type proteins to interact. For proteins already potentially interacting, phosphorylation of KvLQT1 appears to be the driving factor abrogating hERG-KvLQT1 interaction. This work increases our knowledge about hERG-KvLQT1 interactions, which may contribute to the efforts to elucidate mechanisms that underlie many types of arrhythmias, and also further characterizes novel protein-protein interactions between two distinct potassium channel families.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2021.183556DOI Listing

Publication Analysis

Top Keywords

herg kvlqt1
24
protein-protein interactions
16
herg
9
kvlqt1
9
phosphorylation state
8
potassium channel
8
repolarizing currents
8
interactions herg
8
herg-kvlqt1 interactions
8
interactions
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!