Alkylating drugs are among the most often used chemotherapeutics. While cancer cells frequently develop resistance to alkylation treatments, detailed understanding of mechanisms that lead to the resistance is limited. Here, by using genome-wide CRISPR-Cas9 based screen, we identify transcriptional Mediator complex subunit 13 (MED13) as a novel modulator of alkylation response. The alkylation exposure causes significant MED13 downregulation, while complete loss of MED13 results in reduced apoptosis and resistance to alkylating agents. Transcriptome analysis identified cyclin D1 (CCND1) as one of the highly overexpressed genes in MED13 knock-out (KO) cells, characterized by shorter G1 phase. MED13 is able to bind to CCND1 regulatory elements thus influencing the expression. The resistance of MED13 KO cells is directly dependent on the cyclin D1 overexpression, and its down-regulation is sufficient to re-sensitize the cells to alkylating agents. We further demonstrate the therapeutic potential of MED13-mediated response, by applying combinatory treatment with CDK8/19 inhibitor Senexin A. Importantly, the treatment with Senexin A stabilizes MED13, and in combination with alkylating agents significantly reduces viability of cancer cells. In summary, our findings identify novel alkylation stress response mechanism dependent on MED13 and cyclin D1 that can serve as basis for development of innovative therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897519PMC
http://dx.doi.org/10.1093/nar/gkaa1289DOI Listing

Publication Analysis

Top Keywords

alkylating agents
12
med13
9
mediator complex
8
complex subunit
8
subunit med13
8
resistance alkylation
8
cancer cells
8
resistance
5
alkylation
5
cells
5

Similar Publications

Pancreatic neuroendocrine tumours (PanNETs) have intra-tumour heterogeneity, notably regarding the Ki-67 index, which is a major prognostic factor. The temporal evolution of PanNET biology is poorly known. We aimed to study the prognostic impact of the temporal evolution of Ki-67 and other molecular markers (MEN1, ATRX/DAXX, PDX1/ARX) in PanNETs.

View Article and Find Full Text PDF

Background: In the fifth National Wilms Tumor Study, patients received vincristine and dactinomycin (VA) without radiation for stage I focal anaplastic Wilms tumor (FAWT) and VA plus doxorubicin (DD4A) and radiation for stage II-IV FAWT. Four-year event-free survival (EFS) and overall survival (OS) for stage I FAWT were 67.5% and 88.

View Article and Find Full Text PDF

Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Chemotherapy-induced diminished murine ovarian reserve model and impact of low-dose chemotherapy on fertility.

F S Sci

January 2025

Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium. Electronic address:

Objective: To establish a murine model of chemotherapy-induced diminished ovarian reserve (DOR) and investigate residual fertility after chemotherapy exposure.

Design: Two different chemotherapy protocols were tested to establish a valid DOR model by comparing follicle densities in mice given either protocol versus physiological solution. An ovarian stimulation protocol was then selected from among different gonadotropins by counting the number of day-2 embryos obtained from normal mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!