AI Article Synopsis

  • A new gradient coil with second and third order shims was created for a 9.4 T small animal MRI, specifically designed for marmoset imaging.
  • The design utilized advanced techniques to minimize power in conducting surfaces, achieving high efficiency of 1.5 mT/mA while ensuring gradient uniformity within 5% in the designated imaging area.
  • Innovative cooling systems were introduced, enabling the coil to function at 100 A RMS with a temperature rise of less than 30°C, which is 25% of its maximum current capacity.

Article Abstract

A gradient coil with integrated second and third order shims has been designed and constructed for use inside an actively shielded 310 mm horizontal bore 9.4 T small animal MRI. An extension of the boundary element method, to minimise the power deposited in conducting surfaces, was used to design the gradients, and a boundary element method with a constraint on mutual inductance was used to design the shims. The gradient coil allows for improved imaging performance and was optimized for an imaging region appropriate for marmoset imaging studies. Efficiencies of 1.5 mT m A were achieved in a 15 cm wide bore while maintaining gradient uniformity ≤5% over the 8 cm region of interest. Two new cooling methods were implemented which allowed the gradient coil to operate at 100 A RMS, 25 % of max current with a temperature rise below 30 C.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ab8d97DOI Listing

Publication Analysis

Top Keywords

gradient coil
16
marmoset imaging
8
boundary element
8
element method
8
gradient
5
design construction
4
construction gradient
4
coil
4
coil high
4
high resolution
4

Similar Publications

Light-harvesting complex II (LHCII), the most abundant membrane protein in photosystem II, plays dual roles, i.e., efficient light harvesting and energy transfer to the reaction center under low light conditions and dissipating excess energy as heat to prevent photodamage under high irradiation conditions.

View Article and Find Full Text PDF

Tracking head movement inside an MR scanner using electromagnetic coils.

Heliyon

July 2024

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.

Prospective motion corrections in brain imaging for MRI are fairly challenging. Monitoring involuntary head movement inside MR scanner is crucial for prospective motion correction. This initial study delves into utilizing simulations to track the head's movements within an MRI scanner, achieved by measuring induced voltage changes from time-varying magnetic field gradients in head-mounted coils.

View Article and Find Full Text PDF

Design and construction of gradient coils for an MRI-guided small animal radiation platform.

Heliyon

February 2024

Innovative Technology Of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA.

Small animal radiation experiments use a dedicated hardware platform to deliver radiation to small animals to support pre-clinical radiobiological studies. Image guidance is critical to achieve experiment accuracy. MR-based image guidance became recently available in human radiation therapy by integrating an MR scanner with a medical linear accelerator.

View Article and Find Full Text PDF

Purpose: To perform prospective motion correction (PMC) for improved and susceptibility mapping using a purely navigator-based approach.

Methods: Spherical navigators (SNAVs) were combined with an additional FID readout for simultaneous measurement of motion and zeroth-order field shifts. The resulting FIDSNAVs were interleaved for PMC of a multi-echo gradient echo sequence with retrospective correction.

View Article and Find Full Text PDF

Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T.

Magn Reson Imaging

February 2025

Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China. Electronic address:

Article Synopsis
  • - The study aimed to create a novel conformal elliptical-cylinder resonator, called MICER, to improve wrist MRI scans at 1.5 T and assess its clinical utility.
  • - Researchers compared MICER with a traditional 12-channel wrist coil using various MRI sequences and analyzed images from a phantom and 14 wrists of healthy volunteers, focusing on image quality metrics like signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).
  • - Results showed that MICER provided significantly better SNR and CNR for wrist tissues compared to the 12-channel wrist coil, suggesting its promising role in enhancing MRI quality in clinical settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!