A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catecholamine-Copper Redox as a Basis for Site-Specific Single-Step Functionalization of Material Surfaces. | LitMetric

Catecholamine-Copper Redox as a Basis for Site-Specific Single-Step Functionalization of Material Surfaces.

ACS Appl Mater Interfaces

Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.

Published: January 2021

Realization of robust and facile surface functionalization processes is critical to biomaterials and biotechnology yet remains a challenge. Here, we report a new chemical approach that enables operationally simple and site-specific surface functionalization. The mechanism involves a catechol-copper redox chemistry, where the oxidative polymerization of an alkynyl catecholamine reduces Cu(II) to Cu(I), which catalyzes a click reaction with azide-containing molecules of interest (MOIs). This process enables drop-coating and grafting of two- and three-dimensional solid surfaces in a single operation using as small as sub-microliter volumes. Generalizability of the method is shown for immobilizing MOIs of diverse structure and chemical or biological activity. Biological applications in anti-biofouling, cellular adhesion, scaffold seeding, and tissue regeneration are demonstrated, in which the activities or fates of cells are site-specifically manipulated. This work advances surface chemistry by integrating simplicity and precision with multipurpose surface functionalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990395PMC
http://dx.doi.org/10.1021/acsami.0c19396DOI Listing

Publication Analysis

Top Keywords

surface functionalization
12
catecholamine-copper redox
4
redox basis
4
basis site-specific
4
site-specific single-step
4
functionalization
4
single-step functionalization
4
functionalization material
4
material surfaces
4
surfaces realization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!