AI Article Synopsis

  • The Rexon UL-320 FDR is a new thermoluminescent dosimeter reader that features an innovative temperature measurement system and an automatic processing mechanism.
  • Removable heating planchets collect temperature data with infrared sensors, while a feedback loop ensures precise heating rates ranging from 0.8 to 40°C per second for up to 1,000 seconds.
  • Calibration tests with LiF:Mg,Ti dosimeters confirmed the reader's performance, showing optimized sensitivity at 1,200 V, although some sensitivity drift and glow curve spikes were noted, suggesting improvements could be made with N2 gas and sensitivity corrections.

Article Abstract

The Rexon UL-320 FDR is a novel resistive-heating thermoluminescent dosimeter reader with a unique temperature measurement system and an automated dosimeter processing mechanism. The removable contact heating planchets have black-body adhesives on the back for capturing temperature information with infrared sensors. A heating cycle feedback loop ensures accurate, precise, and reproducible heating sequences. Heating rates between 0.8 and 40°C s-1 for up to 1,000 s are possible. Photomultiplier tube sensitivity and drift, dark current counts, and planchet glow were measured experimentally. Additionally, 25 LiF:Mg,Ti dosimeters were calibrated to demonstrate reader performance. Sensitivity was optimized at 1,200 V, which produced the highest reference light count to dark current count ratio while extending photomultiplier tube life. Dark current counts measured with typical time-temperature profiles for LiF:Mg,Ti were below 10 counts per channel but increased by up to 2.5% for more extreme heating cycles. Reader sensitivity drifts of up to 10% were observed during extended automated operations with typical time-temperature profiles. Total counts resulting from planchet glow decreased with faster heating rates. Calibrations performed with LiF:Mg,Ti dosimeters yielded results comparable to more established reader designs. Spikes were observed in ~3% of the glow curves from planchet dust and oil burning off at elevated temperatures. The use of N2 gas and sensitivity drift corrections are recommended to improve dosimetry performance for the UL-320 FDR reader.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HP.0000000000001386DOI Listing

Publication Analysis

Top Keywords

dark current
12
thermoluminescent dosimeter
8
dosimeter reader
8
removable contact
8
contact heating
8
heating planchets
8
ul-320 fdr
8
heating rates
8
photomultiplier tube
8
sensitivity drift
8

Similar Publications

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN neurons.

Commun Biol

December 2024

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.

View Article and Find Full Text PDF

Chronic stress can adversely affect the female reproductive endocrine system, potentially leading to disorders and impairments in ovarian function. However, current research lacks comprehensive understanding regarding the biochemical characteristics and underlying mechanisms of ovarian damage induced by chronic stress. We established a stable chronic unpredictable stress (CUS)-induced diminished ovarian reserve (DOR) animal model.

View Article and Find Full Text PDF

The growing demand for detection and sensing in the biomedical field is placing higher demands on technology. In clinical testing, it is expected to be able to realize both rapid large-field imaging and analysis of single particles (or single molecules or single cells), and it is expected to be able to grasp both the unique individuality of single particles in time and space during the complex reaction process, as well as the regular correlation between single particles in the same population distribution. Supported and promoted by the theory of localized surface plasmon resonance (LSPR), dark-field microscopy, as a single-particle optical imaging technique with a very high signal-to-noise ratio, provides a powerful new means to address the above clinical detection needs.

View Article and Find Full Text PDF

Bias Tunable SnS/ReSe Tunneling Photodetector with High Responsivity and Fast Response Speed.

Small

December 2024

School of Microelectronics, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi, 710072, P. R. China.

2D photodetectors operating in photovoltaic mode exhibit a trade-off between response speed and photoresponsivity. This work presents a phototransistor based on SnS/ReSe heterojunction. Under negative bias, the energy band spike at the heterojunction interface impedes the carrier drifting so that the dark current is as low as 10 A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!