A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Context-Dependent Modulation of Trunk Muscle Activity on Manual Wheelchair Propulsion. | LitMetric

Effect of Context-Dependent Modulation of Trunk Muscle Activity on Manual Wheelchair Propulsion.

Am J Phys Med Rehabil

From the Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio (SNB, KMF, NFB, RJT); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (NFB, RJT); and Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio (RJT).

Published: October 2021

Objective: The aims of the study were to reliably determine the two main phases of manual wheelchair propulsion via a simple wearable sensor and to evaluate the effects of modulated trunk and hip stimulation on manual wheelchair propulsion during the challenging tasks of ramp assent and level sprint.

Design: An offline tool was created to identify common features between wrist acceleration signals for all subjects who corresponded to the transitions between the contact and recovery phases of manual wheelchair propulsion. For one individual, the acceleration rules and thresholds were implemented for real-time phase-change event detection and modulation of stimulation.

Results: When pushing with phase-dependent modulated stimulation, there was a significant (P < 0.05) increase in the primary speed variable (5%-6%) and the subject rated pushing as "moderately or very easy." In the offline analysis, the average phase-change event detection success rate was 79% at the end of contact and 71% at the end of recovery across the group.

Conclusions: Signals from simple, wrist-mounted accelerometers can detect the phase transitions during manual wheelchair propulsion instead of elaborate and expensive, instrumented systems. Appropriately timing changes in muscle activation with the propulsion cycle can result in a significant increase in speed, and the system was consistently perceived to be significantly easier to use.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PHM.0000000000001691DOI Listing

Publication Analysis

Top Keywords

manual wheelchair
20
wheelchair propulsion
20
phases manual
8
phase-change event
8
event detection
8
propulsion
6
manual
5
wheelchair
5
context-dependent modulation
4
modulation trunk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!