Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement.

Environ Sci Pollut Res Int

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China.

Published: March 2021

As one of the low-impact development measures, bioretention plays an important role in reducing the runoff peak flow and minimizing runoff pollutants, such as heavy metals, suspended solids, and nutrients. However, the efficiency of nitrogen removal in the bioretention system is unstable, owing to the different chemical properties of various forms of nitrogen and the limitations of current bioretention system for nitrogen transformation. This review article summarizes the recent advances in bioretention system in treatment of urban stormwater and agricultural runoff for nitrogen removal. The microbial characteristics and main processes of nitrogen transformation in bioretention are reviewed. The operational conditions affecting nitrogen removal, including climatic conditions, pH, wet-dry alternation, influent loads and nitrogen concentration, and hydraulic residence time are discussed. Finally, measures or strategies for increasing nitrogen removal efficiency are proposed from the perspectives of structural improvement of the bioretention system, optimization of medium composition, and enhancement of the nitrogen removal reaction processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-12319-1DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
20
bioretention system
16
nitrogen
10
operational conditions
8
nitrogen transformation
8
bioretention
7
removal
5
bioretention removal
4
removal nitrogen
4
nitrogen processes
4

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Global Relative Importance of Denitrification and Anammox in Microbial Nitrogen Loss Across Terrestrial and Aquatic Ecosystems.

Adv Sci (Weinh)

December 2024

Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.

Denitrification and anaerobic ammonium oxidation (anammox) are the major microbial processes responsible for global nitrogen (N) loss. Yet, the relative contributions of denitrification and anammox to N loss across contrasting terrestrial and aquatic ecosystems worldwide remain unclear, hampering capacities to predict the human alterations in the global N cycle. Here, a global synthesis including 3240 observations from 199 published isotope pairing studies is conducted and finds that denitrification governs microbial N loss globally (79.

View Article and Find Full Text PDF

Response Surface Methodology for Optimization of Media Components for Production of Lipase from KUBT4.

Arch Razi Inst

June 2024

Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).

Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.

View Article and Find Full Text PDF

Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.

View Article and Find Full Text PDF

ZnCl-Doped Mesoporous Silica Nanoparticles Prepared via a Simple One-Pot Method for Highly Efficient Nitrate Removal.

Environ Res

December 2024

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand. Electronic address:

Nitrate is a crucial nutrient in the natural nitrogen cycle. However, human activities have elevated nitrate levels in aquatic ecosystems beyond natural thresholds, posing risks to human health and the environment. In this work, ZnCl-doped mesoporous silica nanoparticles (ZnCl@MSN) were synthesized using a one-pot preparation method, leading to a streamlined process with reduced time and energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!