Background: Frame registration is a critical step to ensure accurate electrode placement in stereotactic procedures such as stereoelectroencephalography (SEEG) and is routinely done by merging a computed tomography (CT) scan with the preoperative magnetic resonance (MR) examination. Three-dimensional fluoroscopy (XT) has emerged as a method for intraoperative electrode verification following electrode implantation and more recently has been proposed as a registration method with several advantages.
Methods: We compared the accuracy of SEEG electrode placement by frame registration with CT and XT imaging by analyzing the Euclidean distance between planned and post-implantation trajectories of the SEEG electrodes to calculate the error in both the entry (EP) and target (TP) points. Other variables included radiation dose, efficiency, and complications.
Results: Twenty-seven patients (13 CT and 14 XT) underwent placement of SEEG electrodes (319 in total). The mean EP and TP errors for the CT group were 2.3 mm and 3.3 mm, respectively, and 1.9 mm and 2.9 mm for the XT group, with no statistical difference (p = 0.75 and p = 0.246). The time to first electrode placement was similar (XT, 82 ± 10 min; CT, 84 ± 22 min; p = 0.858) and the average radiation exposure with XT (234 ± 55 mGy*cm) was significantly lower than CT (1245 ± 123 mGy*cm) (p < 0.0001). Four complications were documented with equal incidence in both groups.
Conclusions: The use of XT as a method for registration resulted in similar implantation accuracy compared with CT. Advantages of XT are the substantial reduction in radiation dose and the elimination of the need to transfer the patient out of the room which may have an impact on patient safety and OR efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00701-021-04706-5 | DOI Listing |
Int J Surg
December 2024
Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA.
Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy.
View Article and Find Full Text PDFJ Matern Fetal Neonatal Med
December 2025
Upstate University Hospital, Syracuse, NY, USA.
The incidence for congenital heart block is estimated as high as 1 in 15,000 live births. Up to 90% of cases of congenital heart block, in which there is no anatomical abnormalities, are attributed to maternal systemic lupus erythematous or Sjögren's disease. 50% of these mothers are asymptomatic at time of diagnosis.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.
Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).
Study Design: Retrospective cohort study.
Setting: Tertiary academic medical center.
MethodsX
June 2025
Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Road, Milwaukee, WI, 53226.
Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.
View Article and Find Full Text PDFJ Clin Neurophysiol
December 2024
Human Brain Mapping Program, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, U.S.A.; and.
Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.
Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!