The effective control of microbial and metabolically derived biological toxins which negatively impact physical health remains a key challenge for the 21st century. 2-Dimensional graphene and MXene nanomaterials are relatively new additions to the field of biomedical materials with superior external surface areas suited to adsorptive remediation of biological toxins. However, relatively little is known about their physiological interactions with biological systems and, to date, no comparative biological studies have been done. This study compares titanium carbide MXene (Ti3C2Tx) in multilayered and delaminated forms with graphene variants to assess the impact of variable physical properties on cellular inflammatory response to endotoxin stimulus. No significant impact on cell metabolism or induction of inflammatory pathways leading to cell death was observed. No significant increase in markers of blood cell activation and haemolysis occurred. Whilst graphene nanoplatelets (GNP), graphene oxide (GO) and Ti3C2Tx showed insignificant antibacterial activity towards Escherichia coli, silver nanoparticle-modified GO (GO-Ag) induced bacterial cell death and at a lower dose than silver nanoparticles. All nanomaterials significantly reduced bacterial endotoxin induced THP-1 monocyte IL-8, IL-6 and TNF-α cytokine production by >99%, >99% and >80% respectively, compared to control groups. This study suggests the utility of these nanomaterials as adsorbents in blood contacting medical device applications for removal of inflammatory cytokines linked to poor outcome in patients with life-threatening infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0bm01953d | DOI Listing |
Small Methods
January 2025
Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
With the advent of the 5G era, there has been a marked increase in research interest concerning electromagnetic wave-absorbing materials. A critical challenge remains in improving the wave-absorbing properties of these materials while satisfying diverse application demands. MXenes, identified as prominent "emerging" 2D materials for wave absorption, offer unique advantages that are expected to drive advancements and innovations in this field.
View Article and Find Full Text PDFThis paper demonstrates a customized quartz tuning fork (QTF) coated with the titanium carbide (TiCT) MXene film that can effectively enhance the sensitivity of light-induced thermoelastic spectroscopy (LITES). The MXene film is coated at the root of the customized QTF. The film area is proven to have little impact on resonance frequency, bandwidth, quality factor, and amplitude of the second harmonic signal (2) based on the fundamental flexural mode.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China; Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada. Electronic address:
The escalating atmospheric CO₂ concentration urgently demands ecologically friendly mitigation strategies. Compared to alternative catalysts, carbonic anhydrase (CA) demonstrates exceptionally high catalytic efficiency in CO₂ hydration reactions. Nevertheless, traditional CA immobilization techniques exhibit peak enzymatic activity exclusively at optimal temperatures, consequently constraining their effective application across diverse environmental thermal conditions in industrial settings.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China. Electronic address:
Background: Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!