A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Colloidal Stability and Concentration Effects on Nanoparticle Heat Delivery for Magnetic Fluid Hyperthermia. | LitMetric

Colloidal Stability and Concentration Effects on Nanoparticle Heat Delivery for Magnetic Fluid Hyperthermia.

Langmuir

Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil.

Published: January 2021

The heat produced by magnetic nanoparticles, when they are submitted to a time-varying magnetic field, has been used in many auspicious biotechnological applications. In the search for better performance in terms of the specific power absorption (SPA) index, researchers have studied the influence of the chemical composition, size and dispersion, shape, and exchange stiffness in morphochemical structures. Monodisperse assemblies of magnetic nanoparticles have been produced using elaborate synthetic procedures, where the product is generally dispersed in organic solvents. However, the colloidal stability of these rough dispersions has not received much attention in these studies, hampering experimental determination of the SPA. To investigate the influence of colloidal stability on the heating response of ferrofluids, we produced bimagnetic core@shell NPs chemically composed of a ZnMn mixed ferrite core covered by a maghemite shell. Aqueous ferrofluids were prepared with these samples using the electric double layer (EDL) as a strategy to maintain colloidal stability. By starting from a proper sample, ultrastable concentrated ferrofluids were achieved by both tuning the ion/counterion ratio and controlling the water content. As the colloidal stability mainly depends on the ion configuration on the surface of the magnetic nanoparticles, different levels of nanoparticle clustering are achieved by changing the ionic force and pH of the medium. Thus, the samples were submitted to two procedures of EDL destabilization, which involved dilution with an alkaline solution and a neutral pH viscous medium. The SPA results of all prepared ferrofluid samples show a reduction of up to half the efficiency of the standard sample when the ferrofluids are in a neutral pH or concentrated regime. Such results are explained in terms of magnetic dipolar interactions. Our results point to the importance of ferrofluid colloidal stability in a more reliable experimental determination of the NP heat generation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03052DOI Listing

Publication Analysis

Top Keywords

colloidal stability
24
magnetic nanoparticles
12
experimental determination
8
colloidal
6
magnetic
6
stability
5
stability concentration
4
concentration effects
4
effects nanoparticle
4
nanoparticle heat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!