When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02758 | DOI Listing |
iScience
October 2024
Laboratory of Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy.
Fascinated by the purple color, water-repellent, and self-cleaning properties of leaves, we studied their morphology, wetting, and condensation frosting. Wax nanotubules confer high contact angles, enabling coalescence-induced condensation droplet (out-of-plane) jumping, which, as known, contributes to slowing down frost. Another type of movement-this time in-plane-becomes predominant in reducing the frosting velocity ( ) within a sub-cooling temperature range.
View Article and Find Full Text PDFLangmuir
August 2024
School of Energy Science and Engineering, Central South University, Changsha 410083, China.
Coalescence-induced droplet jumping has attracted significant attention in recent years. However, achieving a high jumping velocity while predictably regulating the jumping direction of the merged droplets by simple superhydrophobic structures remains a challenge. In this work, a novel V-shaped superhydrophobic surface with a ridge is conceived for enhanced and predictably guided coalescence-induced droplet jumping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
We experimentally investigated the coalescence-induced droplet-particle jumping phenomenon on a submillimeter scale in symmetric and asymmetric particle arrangements with poly(methyl methacrylate) (PMMA) particles and stainless steel (SS) particles. Coalescence-induced droplet-particle jumping exhibited excellent capability and interesting behavior for both droplet jumping enhancement and particle transport. The particle increased the normalized droplet jumping velocity from 0.
View Article and Find Full Text PDFACS Nano
March 2024
Laboratory of Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.
Coalescence-induced condensation droplet jumping has been extensively studied for anti-icing, condensation heat transfer, water harvesting, and self-cleaning. Another phenomenon that is gaining attention for potential enhancements is the self-ejection of individual droplets. However, the mechanism underlying this process remains elusive due to cases in which the abrupt detachment of an interface establishes an initial Laplace pressure difference.
View Article and Find Full Text PDFLangmuir
February 2024
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.
Coalescence-induced jumping has promised a substantial reduction in the droplet detachment size and consequently shows great potential for heat-transfer enhancement in dropwise condensation. In this work, using molecular dynamics simulations, the evolution dynamics of the liquid bridge and the jumping velocity during coalescence-induced nanodroplet jumping under a perpendicular electric field are studied for the first time to further promote jumping. It is found that using a constant electric field, the jumping performance at the small intensity is weakened owing to the continuously decreased interfacial tension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!