A Fenton-like reaction system with analyte-activated catfish effect as an enhanced colorimetric and photothermal dopamine bioassay.

Analyst

Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.

Published: March 2021

Fenton-like reaction systems have been proven to be efficient as powerful promoters in advanced oxidation processes (AOPs) due to their generated reactive oxygen species (ROS), such as ˙OH and ˙O, which can further oxidize a specific chromogenic substrate like 3,3',5,5'-tetramethylbenzidine (TMB) to generate sensitive color readout and thereby demonstrate more potential in the colorimetric analysis field. However, the inherent drawback of the low rate-limiting step of Fe/Fe conversion in the Fenton-like reaction and its resultant inefficiency for HO decomposition hinder its practical applications. We herein communicate an analyte-activated catfish effect based catalysis strategy to promote the Fenton-like reaction, in which dopamine, like a catfish, was added to activate the Fenton-like reaction. By definition, the conversion rate of Fe to Fe in the proposed Fenton-like reaction can be significantly accelerated through a specific DA-mediated electron transfer process which further promotes the reaction activity in the Fenton-like reaction to generate more ˙OH and ˙O radicals. As a result, the produced ˙OH and ˙O radicals in such a reaction system can significantly oxidize TMB indicator into its oxidation product (TMBox) and therefore indicate the corresponding target-dependent color and photothermal signal readout, enabling the successful fabrication of a more sensitive and stable colorimetric and photothermometric DA sensor. More significantly, this strategy can greatly advance the practical application of Fenton-like reactions in the fields of colorimetric and photothermometric bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0an01830aDOI Listing

Publication Analysis

Top Keywords

fenton-like reaction
28
˙oh ˙o
12
fenton-like
8
reaction system
8
analyte-activated catfish
8
reaction
8
˙o radicals
8
colorimetric photothermometric
8
system analyte-activated
4
catfish enhanced
4

Similar Publications

Emerging contaminants (ECs) pose great challenges to water treatment technology due to their complexity and high harm. In this paper, the method of dielectric barrier discharge (DBD) plasma coupled with iron-based catalyst (FeNC) activating periodate (PI) was first designed for ECs removal. The ingenious introduction of FeNC not only promotes the Fenton-like reaction of DBD system but also reduces the PI activation energy barrier and accelerates the electron shuttle between PI and pollutants.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanometer system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.

View Article and Find Full Text PDF

Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.

View Article and Find Full Text PDF

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!