GATA6 is a regulator of sinus node development and heart rhythm.

Proc Natl Acad Sci U S A

Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada K1H 8M5;

Published: January 2021

The sinus node (SAN) is the primary pacemaker of the human heart, and abnormalities in its structure or function cause sick sinus syndrome, the most common reason for electronic pacemaker implantation. Here we report that transcription factor GATA6, whose mutations in humans are linked to arrhythmia, is highly expressed in the SAN and its haploinsufficiency in mice results in hypoplastic SANs and rhythm abnormalities. Cell-specific deletion reveals a requirement for GATA6 in various SAN lineages. Mechanistically, GATA6 directly activates key regulators of the SAN genetic program in conduction and nonconduction cells, such as TBX3 and EDN1, respectively. The data identify GATA6 as an important regulator of the SAN and provide a molecular basis for understanding the conduction abnormalities associated with GATA6 mutations in humans. They also suggest that GATA6 may be a potential modifier of the cardiac pacemaker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817143PMC
http://dx.doi.org/10.1073/pnas.2007322118DOI Listing

Publication Analysis

Top Keywords

gata6 regulator
8
sinus node
8
gata6 mutations
8
mutations humans
8
gata6
7
san
5
regulator sinus
4
node development
4
development heart
4
heart rhythm
4

Similar Publications

Congenital heart disease (CHD) represents nearly one-third of congenital birth defects annually, with ventricular septal defect (VSD) being the most common type. The aim of this study was to explore the role of specific GATA binding protein 6 gene () mutations as a potential etiological factor in the development of VSD through an in silico approach. Data were collected from the human gene databases: DisGeNET and GeneCards, with protein-protein interaction networks constructed via STRING and Cytoscape.

View Article and Find Full Text PDF

An animal model recapitulates human hepatic diseases associated with mutations.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.

Heterozygotic mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a knockout zebrafish which recapitulates most of the symptoms in patients with mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy characterized by insidious onset and lack of effective therapy. The molecular pathogenesis of PDA remains to be understood fully. Transcriptional factor GATA6 is an important transcriptional regulator in normal pancreas development, particularly in the initial specification and differentiation of the pancreas.

View Article and Find Full Text PDF

In preimplantation embryos, epiblast (EPI) fate specification from the inner cell mass is controlled by the segregation of NANOG and GATA6 expression. TEAD-YAP interaction is activated during EPI formation and is required for pluripotency factor expression. These events occur asynchronously with similar timing during EPI formation, and their relationship remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 35 nuclear receptors (NRs) influence the differentiation and maintenance of key immune cells using a method called "Rainbow-CRISPR."
  • It finds that receptors for retinoic acid have significant and specific roles in various immune cell types, particularly in macrophages.
  • Notably, it uncovers a unique function of the retinoic acid receptor gamma (RARγ) in regulating immune cell survival and inflammasome activity, revealing its dual role in promoting health or cell death in macrophages.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!