A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Step Detection from Different Waist-Worn Sensor Positions: Implications for Clinical Studies. | LitMetric

Analyzing human gait with inertial sensors provides valuable insights into a wide range of health impairments, including many musculoskeletal and neurological diseases. A representative and reliable assessment of gait requires continuous monitoring over long periods and ideally takes place in the subjects' habitual environment (real-world). An inconsistent sensor wearing position can affect gait characterization and influence clinical study results, thus clinical study protocols are typically highly proscriptive, instructing all participants to wear the sensor in a uniform manner. This restrictive approach improves data quality but reduces overall adherence. In this work, we analyze the impact of altering the sensor wearing position around the waist on sensor signal and step detection. We demonstrate that an asymmetrically worn sensor leads to additional odd-harmonic frequency components in the frequency spectrum. We propose a robust solution for step detection based on autocorrelation to overcome sensor position variation (sensitivity = 0.99, precision = 0.99). The proposed solution reduces the impact of inconsistent sensor positioning on gait characterization in clinical studies, thus providing more flexibility to protocol implementation and more freedom to participants to wear the sensor in the position most comfortable to them. This work is a first step towards truly position-agnostic gait assessment in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768099PMC
http://dx.doi.org/10.1159/000511611DOI Listing

Publication Analysis

Top Keywords

step detection
12
sensor
9
clinical studies
8
inconsistent sensor
8
sensor wearing
8
wearing position
8
gait characterization
8
clinical study
8
participants wear
8
wear sensor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!