The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in (cotton) (Arabidopsis), and (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778653 | PMC |
http://dx.doi.org/10.1007/s13205-020-02499-5 | DOI Listing |
Cell Rep
January 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:
Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil.
Background: The therapeutic targeting of the intestinal microbiota has gained increasing attention as a promising avenue for addressing mood disorders. This study aimed to assess the potential effect of supplementing standard pharmacological treatment with the probiotic kefir in patients with Major Depressive Disorder (MDD).
Methods: Thirty-eight female participants diagnosed with moderate MDD by the Hamilton Rating Scale for Depression (HAM-D) were selected to receive the probiotic kefir in conjunction with antidepressant therapy for 12 weeks.
Curr Osteoporos Rep
January 2025
Department of Immunology, Tufts University, Boston, MA, 02111, USA.
Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.
Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.
Curr Hypertens Rep
January 2025
Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.
Purpose Of Review: To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen.
Recent Findings: Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control.
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!