Sci Rep
Programa de Pós-Graduação em Proteção de Plantas, Instituto Federal Goiano, Rodovia Geraldo Silva Nascimento, Km 2,5, Urutaí, GO, CEP: 75790-000, Brazil.
Published: January 2021
Trichoderma harzianum is a filamentous fungus used as a biological control agent for agricultural pests. Genes of this microorganism have been studied, and their applications are patented for use in biofungicides and plant breeding strategies. Gene editing technologies would be of great importance for genetic characterization of this species, but have not yet been reported. This work describes mutants obtained with an auxotrophic marker in this species using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/ Cas (CRISPR-associated) system. For this, sequences for a guide RNA and Cas9 overexpression were inserted via biolistics, and the sequencing approach confirmed deletions and insertions at the pyr4 gene. Phenotypic characterization demonstrated a reduction in the growth of mutants in the absence of uridine, as well as resistance to 5-fluorotic acid. In addition, the gene disruption did not reduce mycoparasitc activity against phytopathogens. Thus, target disruption of the pyr4 gene in T. harzianum using the CRISPR/Cas9 system was demonstrated, and it was also shown that endogenous expression of the system did not interfere with the biological control activity of pathogens. This work is the first report of CRISPR Cas9-based editing in this biocontrol species, and the mutants expressing Cas9 have potential for the generation of useful technologies in agricultural biotechnology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806921 | PMC |
http://dx.doi.org/10.1038/s41598-020-80186-4 | DOI Listing |
Appl Environ Microbiol
January 2025
Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
Unlabelled: The gene encoding fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China.
Tobacco () black shank disease, caused by , is a significant threat to tobacco crops, leading to severe economic losses. Prolonged use of agrochemicals to control this disease has prompted the exploration of eco-friendly biological control strategies. This study investigated the effects of , a biocontrol agent, on in comparison to , focusing on growth, biomass, root morphology and anatomy, hormonal changes, and osmotic regulation.
View Article and Find Full Text PDFBraz J Biol
January 2025
Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil.
Bot Stud
January 2025
Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist, Taipei, 106319, Taiwan (R.O.C.).
Background: Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study.
Results: The feature-based molecular networking (FBMN) analysis showed that T.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.