Executive function plays a critical role in regulating behaviour. Behaviour which directs attention towards the correct solution leads to increased executive function performance in children, but it is unknown how other animals respond to such scaffolding behaviour. Dogs were presented with an A-not-B detour task. After learning to go through gap A to obtain the reward, the barrier was reversed, and the dogs had to inhibit their learned response and enter through gap B on the opposite side. Failure to do so is known as the perseveration error. In test trials, dogs taking part in one of two scaffolding conditions, a pointing condition, where the experimenter pointed to the new gap, and a demonstration condition, where the experimenter demonstrated the new route, were no less likely to commit the perseveration error than dogs in a control condition with no scaffolding behaviour. Dogs' lack of responsiveness to scaffolding behaviour provides little support for suggestions that simple social learning mechanisms explains scaffolding behaviour in humans. Instead, our results suggest that the theory of natural pedagogy extends to the development of executive function in humans. This suggests that human children's predisposition to interpret ostensive-communicative cues as informative may be an innate, species-specific adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807054 | PMC |
http://dx.doi.org/10.1038/s41598-020-79557-8 | DOI Listing |
BMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Cell
January 2025
Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:
Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
Due to its commercial availability and well-defined structure, the interaction between bovine protein β-lactoglobulin (βLG) and a wide variety of non-native ligands - including transition metal complexes - has been explored, but its application as an artificial metalloenzyme scaffold is limited. This protein is hypothesized to transport fatty acids and other nutrients during juvenile development, and it binds hydrophobic ligands inside a binding pocket constructed upon an 8-stranded β-barrel, called the 'calyx'. Herein, we compare the binding behavior of two rhenium(anthracene-bispyridine) ('Anth-py') tricarbonyl complexes, one with a 12‑carbon chain appended to the ligand scaffold ('Anth-py') to βLG.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!